Reducing exciton binding energy of antimony-based perovskites by improving the phase purity for efficient solar cells.

IF 12.2 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Tengyu Xu, Xian Zhang, Fangzhou Liu, Huichao Guo, Jiaqi Zhang, Shaogeng Cai, Deao Li, Yangyang Zhang, Yan Guan, Wenjin Yu, Dechun Zou, Lixin Xiao, Cuncun Wu
{"title":"Reducing exciton binding energy of antimony-based perovskites by improving the phase purity for efficient solar cells.","authors":"Tengyu Xu, Xian Zhang, Fangzhou Liu, Huichao Guo, Jiaqi Zhang, Shaogeng Cai, Deao Li, Yangyang Zhang, Yan Guan, Wenjin Yu, Dechun Zou, Lixin Xiao, Cuncun Wu","doi":"10.1039/d5mh00003c","DOIUrl":null,"url":null,"abstract":"<p><p>Antimony-based halide perovskites have attracted significant attention owing to their unique optoelectronic properties and low toxicity. However, the distinct defect physics and high exciton binding energy of antimony-based perovskites compared with their lead-based analogues significantly hinder the photovoltaic performance of antimony-based perovskite solar cells (PSCs). In this work, a feasible strategy by regulating the precursor composition is introduced to mitigate the defects and impurity phases of Cs<sub>3</sub>Sb<sub>2</sub>Cl<sub><i>x</i></sub>I<sub>9-<i>x</i></sub> films. An optimized content of excess SbI<sub>3</sub> in the precursor composition was found to effectively suppress the CsI impurity phases in the obtained Cs<sub>3</sub>Sb<sub>2</sub>Cl<sub><i>x</i></sub>I<sub>9-<i>x</i></sub> films, leading to enhanced crystallinity and reduced defects. Furthermore, the obtained Cs<sub>3</sub>Sb<sub>2</sub>Cl<sub><i>x</i></sub>I<sub>9-<i>x</i></sub> films exhibited an increased dielectric response and reduced exciton binding energy, which are conducive to exciton dissociation and carrier transport. A champion efficiency of 3.42% was achieved with the optimized solar cell devices, which is one of the highest efficiencies reported for all-inorganic antimony-based PSCs. These findings provide new perspectives for exploring high-efficiency antimony-based PSCs.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5mh00003c","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Antimony-based halide perovskites have attracted significant attention owing to their unique optoelectronic properties and low toxicity. However, the distinct defect physics and high exciton binding energy of antimony-based perovskites compared with their lead-based analogues significantly hinder the photovoltaic performance of antimony-based perovskite solar cells (PSCs). In this work, a feasible strategy by regulating the precursor composition is introduced to mitigate the defects and impurity phases of Cs3Sb2ClxI9-x films. An optimized content of excess SbI3 in the precursor composition was found to effectively suppress the CsI impurity phases in the obtained Cs3Sb2ClxI9-x films, leading to enhanced crystallinity and reduced defects. Furthermore, the obtained Cs3Sb2ClxI9-x films exhibited an increased dielectric response and reduced exciton binding energy, which are conducive to exciton dissociation and carrier transport. A champion efficiency of 3.42% was achieved with the optimized solar cell devices, which is one of the highest efficiencies reported for all-inorganic antimony-based PSCs. These findings provide new perspectives for exploring high-efficiency antimony-based PSCs.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信