{"title":"Boosting Sodium Storage in Pitch-Derived Hard Carbon via MgO Catalytic Preoxidation.","authors":"Haizhou Liu, Shuhao Xiao, Zhou-Quan Lei, Ying Xu, Wanli Wang, Lin-Bo Huang, Ruo-Xi Jin, Xiao-Chuan Su, Sheng-Yi Li, Li Xu, Yu-Jie Guo, Yu-Guo Guo","doi":"10.1021/acsami.4c19116","DOIUrl":null,"url":null,"abstract":"<p><p>Pitch-based hard carbon (HC) materials at low cost and high carbon yield represent a promising anode for sodium-ion batteries. However, their limited capacity poses a significant challenge to their practical use. Here, we report a universal strategy to boost sodium storage of pitch-based HC materials via catalytic oxidation with magnesium oxide to produce a high-oxygen pitch. The oxygenic groups suppress pitch softening and molecular rearrangement during carbonization, resulting in a highly disordered structure and substantially closed pores in the obtained HC materials. As a result, the optimized HC materials achieve a specific capacity of 321.7 mAh g<sup>-1</sup> with a significant 80.5% increase over typical pitch-based carbon materials, along with a high initial Coulombic efficiency up to 88.5 and 88.3% capacity retention after 600 cycles. This study provides new insights into the rational design of high-capacity pitch-based HC and holds potential for application in other carbon-based materials.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":"13804-13813"},"PeriodicalIF":8.3000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c19116","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Pitch-based hard carbon (HC) materials at low cost and high carbon yield represent a promising anode for sodium-ion batteries. However, their limited capacity poses a significant challenge to their practical use. Here, we report a universal strategy to boost sodium storage of pitch-based HC materials via catalytic oxidation with magnesium oxide to produce a high-oxygen pitch. The oxygenic groups suppress pitch softening and molecular rearrangement during carbonization, resulting in a highly disordered structure and substantially closed pores in the obtained HC materials. As a result, the optimized HC materials achieve a specific capacity of 321.7 mAh g-1 with a significant 80.5% increase over typical pitch-based carbon materials, along with a high initial Coulombic efficiency up to 88.5 and 88.3% capacity retention after 600 cycles. This study provides new insights into the rational design of high-capacity pitch-based HC and holds potential for application in other carbon-based materials.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.