Sn(II)-Pyrophosphate Complex with Low Plating/Stripping Potential for Sn-I Flow Battery Applications.

IF 4.3 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Shengwen Tan, Dunyong He, Tian Xu, Rui Fang, Yanrong Wang, Guowang Diao, Caixing Wang
{"title":"Sn(II)-Pyrophosphate Complex with Low Plating/Stripping Potential for Sn-I Flow Battery Applications.","authors":"Shengwen Tan, Dunyong He, Tian Xu, Rui Fang, Yanrong Wang, Guowang Diao, Caixing Wang","doi":"10.1021/acs.inorgchem.5c00248","DOIUrl":null,"url":null,"abstract":"<p><p>Exploring electrolyte formulations that can effectively reduce the plating/stripping potentials of metallic electrodes holds great significance in advancing the development of high-voltage redox flow batteries. In this study, we introduce a novel Sn-based chelated electrolyte, namely, Sn(P<sub>2</sub>O<sub>7</sub>)<sub>2</sub><sup>6-</sup>, by directly reacting the Sn<sup>2+</sup> solution with an excess of P<sub>2</sub>O<sub>7</sub><sup>4-</sup> solution. Electrochemical tests prove that the incorporation of high-concentration P<sub>2</sub>O<sub>7</sub><sup>4-</sup> ligands could shift the plating/stripping potential to -0.67 V. Thus, the demonstrated Sn-I flow battery reveals an average cell voltage of nearly 1.2 V and maintains stable cycling over 250 cycles at a high current density of 80 mA cm<sup>-2</sup>, with an average energy efficiency of about 70%. Moreover, no dendrite formation formed during the Sn deposition on the carbon felt. This study offers broad prospects for the future development of high-voltage Sn-based flow batteries.</p>","PeriodicalId":40,"journal":{"name":"Inorganic Chemistry","volume":" ","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.inorgchem.5c00248","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Exploring electrolyte formulations that can effectively reduce the plating/stripping potentials of metallic electrodes holds great significance in advancing the development of high-voltage redox flow batteries. In this study, we introduce a novel Sn-based chelated electrolyte, namely, Sn(P2O7)26-, by directly reacting the Sn2+ solution with an excess of P2O74- solution. Electrochemical tests prove that the incorporation of high-concentration P2O74- ligands could shift the plating/stripping potential to -0.67 V. Thus, the demonstrated Sn-I flow battery reveals an average cell voltage of nearly 1.2 V and maintains stable cycling over 250 cycles at a high current density of 80 mA cm-2, with an average energy efficiency of about 70%. Moreover, no dendrite formation formed during the Sn deposition on the carbon felt. This study offers broad prospects for the future development of high-voltage Sn-based flow batteries.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Inorganic Chemistry
Inorganic Chemistry 化学-无机化学与核化学
CiteScore
7.60
自引率
13.00%
发文量
1960
审稿时长
1.9 months
期刊介绍: Inorganic Chemistry publishes fundamental studies in all phases of inorganic chemistry. Coverage includes experimental and theoretical reports on quantitative studies of structure and thermodynamics, kinetics, mechanisms of inorganic reactions, bioinorganic chemistry, and relevant aspects of organometallic chemistry, solid-state phenomena, and chemical bonding theory. Emphasis is placed on the synthesis, structure, thermodynamics, reactivity, spectroscopy, and bonding properties of significant new and known compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信