Dual Activation of N2 and CO2 toward N-O Coupling by Single Copper Ions.

IF 4.3 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Qiuhao Yi, Chaonan Cui, Demiao Ma, Zhixun Luo
{"title":"Dual Activation of N<sub>2</sub> and CO<sub>2</sub> toward N-O Coupling by Single Copper Ions.","authors":"Qiuhao Yi, Chaonan Cui, Demiao Ma, Zhixun Luo","doi":"10.1021/acs.inorgchem.4c05483","DOIUrl":null,"url":null,"abstract":"<p><p>Concurrent activation and conversion of N<sub>2</sub> and CO<sub>2</sub> are of significance yet face numerous obstacles due to the large dissociation energies of N≡N and C═O bonds. Utilizing a specifically developed reflectron time-of-flight mass spectrometer, we investigated the dual activation of N<sub>2</sub> and CO<sub>2</sub> mediated by copper and silver ions under ambient conditions. Isotope experiments identified that both N<sub>2</sub> and CO<sub>2</sub> can be effectively activated to generate a N-O coupling product (NO<sup>+</sup>), especially in the presence of copper ions, and the NO<sup>+</sup> product attains the maximum intensity with an N<sub>2</sub>/CO<sub>2</sub> ratio of 1:2, which validates a three-molecule reaction mechanism, namely, N<sub>2</sub> + 2CO<sub>2</sub> → 2NO + 2CO. Through detailed analyses of thermo-dynamics and reaction dynamics, we illustrate the Cu<sup>+</sup>-catalyzed three-molecule reaction mechanism for N-O coupling, validating the dual activation of N<sub>2</sub> and CO<sub>2</sub> simply by plasma-assisted single-ion catalysis.</p>","PeriodicalId":40,"journal":{"name":"Inorganic Chemistry","volume":" ","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.inorgchem.4c05483","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Concurrent activation and conversion of N2 and CO2 are of significance yet face numerous obstacles due to the large dissociation energies of N≡N and C═O bonds. Utilizing a specifically developed reflectron time-of-flight mass spectrometer, we investigated the dual activation of N2 and CO2 mediated by copper and silver ions under ambient conditions. Isotope experiments identified that both N2 and CO2 can be effectively activated to generate a N-O coupling product (NO+), especially in the presence of copper ions, and the NO+ product attains the maximum intensity with an N2/CO2 ratio of 1:2, which validates a three-molecule reaction mechanism, namely, N2 + 2CO2 → 2NO + 2CO. Through detailed analyses of thermo-dynamics and reaction dynamics, we illustrate the Cu+-catalyzed three-molecule reaction mechanism for N-O coupling, validating the dual activation of N2 and CO2 simply by plasma-assisted single-ion catalysis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Inorganic Chemistry
Inorganic Chemistry 化学-无机化学与核化学
CiteScore
7.60
自引率
13.00%
发文量
1960
审稿时长
1.9 months
期刊介绍: Inorganic Chemistry publishes fundamental studies in all phases of inorganic chemistry. Coverage includes experimental and theoretical reports on quantitative studies of structure and thermodynamics, kinetics, mechanisms of inorganic reactions, bioinorganic chemistry, and relevant aspects of organometallic chemistry, solid-state phenomena, and chemical bonding theory. Emphasis is placed on the synthesis, structure, thermodynamics, reactivity, spectroscopy, and bonding properties of significant new and known compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信