Intelligent Sensing and Identification of Spectrum Anomalies With Alpha-Stable Noise

IF 3.7 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Mingqian Liu, Zhaoxi Wen, Yunfei Chen, Junlin Zhang, Huigui Cheng, Nan Zhao
{"title":"Intelligent Sensing and Identification of Spectrum Anomalies With Alpha-Stable Noise","authors":"Mingqian Liu,&nbsp;Zhaoxi Wen,&nbsp;Yunfei Chen,&nbsp;Junlin Zhang,&nbsp;Huigui Cheng,&nbsp;Nan Zhao","doi":"10.1155/int/5010973","DOIUrl":null,"url":null,"abstract":"<div>\n <p>As the electromagnetic environment becomes more complex, a significant number of interferences and malfunctions of authorized equipment can result in anomalies in spectrum usage. Utilizing intelligent spectrum technology to sense and identify anomalies in the electromagnetic space is of great significance for the efficient use of the electromagnetic space. In this paper, a method for intelligent sensing and identification of anomalies in spectrum with alpha-stable noise is proposed. First, we use a delayed feedback network (DFN) to suppress alpha-stable noise. Then, we use a long short-term memory (LSTM) autoencoder-based attention mechanism to sense anomaly. Finally, we use the deep forest model to identify abnormal spectrum. Simulation results demonstrate that the proposed method effectively suppresses alpha-stable noise, and it outperforms existing methods in abnormal spectrum sensing and identification.</p>\n </div>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2025 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/5010973","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/int/5010973","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

As the electromagnetic environment becomes more complex, a significant number of interferences and malfunctions of authorized equipment can result in anomalies in spectrum usage. Utilizing intelligent spectrum technology to sense and identify anomalies in the electromagnetic space is of great significance for the efficient use of the electromagnetic space. In this paper, a method for intelligent sensing and identification of anomalies in spectrum with alpha-stable noise is proposed. First, we use a delayed feedback network (DFN) to suppress alpha-stable noise. Then, we use a long short-term memory (LSTM) autoencoder-based attention mechanism to sense anomaly. Finally, we use the deep forest model to identify abnormal spectrum. Simulation results demonstrate that the proposed method effectively suppresses alpha-stable noise, and it outperforms existing methods in abnormal spectrum sensing and identification.

Abstract Image

具有α稳定噪声的光谱异常智能感知与识别
随着电磁环境变得越来越复杂,授权设备的大量干扰和故障可能导致频谱使用异常。利用智能频谱技术感知和识别电磁空间中的异常,对于有效利用电磁空间具有重要意义。本文提出了一种具有稳定噪声的光谱异常智能感知与识别方法。首先,我们使用延迟反馈网络(DFN)来抑制α稳定噪声。然后,我们使用一种基于长短期记忆(LSTM)自编码器的注意机制来感知异常。最后,利用深度森林模型对异常光谱进行识别。仿真结果表明,该方法有效地抑制了α稳定噪声,在异常频谱感知和识别方面优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Intelligent Systems
International Journal of Intelligent Systems 工程技术-计算机:人工智能
CiteScore
11.30
自引率
14.30%
发文量
304
审稿时长
9 months
期刊介绍: The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信