Alice Varysova, Jan Kubicek, Marek Penhaker, Martin Augustynek, David Oczka, Kristyna Marsolkova, Juraj Timkovic
{"title":"Modeling and Recognition of Retinal Blood Vessels Tortuosity in ROP Plus Disease: A Hybrid Segmentation–Classification Scheme","authors":"Alice Varysova, Jan Kubicek, Marek Penhaker, Martin Augustynek, David Oczka, Kristyna Marsolkova, Juraj Timkovic","doi":"10.1155/int/6688133","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Retinopathy of prematurity (ROP) remains a significant cause of childhood blindness despite advancements in neonatal care. Identifying the plus form of ROP, characterized by dilated and tortuous blood vessels, is crucial for timely intervention. This study introduces an intelligent segmentation–classification system for the autonomous detection of retinal blood vessels and the classification of ROP plus form. Utilizing Clarity RetCam 3 images, our system employs morphological image processing and convolutional neural networks (CNNs) for segmentation and classification, respectively. Testing on a dataset of premature infants’ retinal images demonstrates high segmentation accuracy (median = 0.974) and superior classification performance (accuracy = 0.975, sensitivity = 0.950, and specificity = 1). In addition, the system exhibits versatility, with successful segmentation in adult retinal images from public databases. These findings highlight the system’s potential for clinical use in retinal vessel identification, feature extraction, and ROP plus form classification. The proposed system is capable of effectively identifying retinal blood vessels from both alternatives including adult and premature born retinal images with a high accuracy in contrast to related studies. Thus, this system has the potential to be used in clinical practice for retinal blood vessels’ identification, retinal blood vessels’ feature extraction, and ROP plus form classification.</p>\n </div>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2025 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/6688133","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/int/6688133","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Retinopathy of prematurity (ROP) remains a significant cause of childhood blindness despite advancements in neonatal care. Identifying the plus form of ROP, characterized by dilated and tortuous blood vessels, is crucial for timely intervention. This study introduces an intelligent segmentation–classification system for the autonomous detection of retinal blood vessels and the classification of ROP plus form. Utilizing Clarity RetCam 3 images, our system employs morphological image processing and convolutional neural networks (CNNs) for segmentation and classification, respectively. Testing on a dataset of premature infants’ retinal images demonstrates high segmentation accuracy (median = 0.974) and superior classification performance (accuracy = 0.975, sensitivity = 0.950, and specificity = 1). In addition, the system exhibits versatility, with successful segmentation in adult retinal images from public databases. These findings highlight the system’s potential for clinical use in retinal vessel identification, feature extraction, and ROP plus form classification. The proposed system is capable of effectively identifying retinal blood vessels from both alternatives including adult and premature born retinal images with a high accuracy in contrast to related studies. Thus, this system has the potential to be used in clinical practice for retinal blood vessels’ identification, retinal blood vessels’ feature extraction, and ROP plus form classification.
期刊介绍:
The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.