{"title":"LET-NLM-Decoder: A WFST-based asynchronous lazy-evaluation token-group decoder for first-pass neural language model decoding","authors":"Fangyi Li, Hang Lv, Yiming Wang, Lei Xie","doi":"10.1049/ell2.70145","DOIUrl":null,"url":null,"abstract":"<p>Neural language models (NLMs) have been shown to outperform n-gram language models in automatic speech recognition (ASR) tasks. NLMs are usually used in the second-pass lattice rescoring rather than the first-pass decoding, since its encoded infinite history virtually cannot be compiled into static decoding graphs. However, the modeling power of NLMs is not fully leveraged due to the constraints imposed by the lattice, leading to accuracy loss. To improve this, on-the-fly composition decoders were proposed to utilize NLMs in first-pass decoding with increased computational cost. In this paper, an asynchronous lazy-evaluation token-group decoder with exact lattice generation is proposed to reduce the computational cost of the on-the-fly composition decoder, achieving significant decoding speedup. More specifically, having a novel token-group with a representative element data structure, the proposed decoder performs lazy-evaluation which expands the tokens until a word boundary is reached. Furthermore, based on the score of the representative element in a token-group, the decoder prunes unpromising tokens by an A* algorithm. The experiments show that the proposed decoder can accelerate the vanilla on-the-fly composition decoder by up to 6.9 times, and get paths with even better average likelihoods than lattice rescoring approaches.</p>","PeriodicalId":11556,"journal":{"name":"Electronics Letters","volume":"61 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ell2.70145","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics Letters","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ell2.70145","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Neural language models (NLMs) have been shown to outperform n-gram language models in automatic speech recognition (ASR) tasks. NLMs are usually used in the second-pass lattice rescoring rather than the first-pass decoding, since its encoded infinite history virtually cannot be compiled into static decoding graphs. However, the modeling power of NLMs is not fully leveraged due to the constraints imposed by the lattice, leading to accuracy loss. To improve this, on-the-fly composition decoders were proposed to utilize NLMs in first-pass decoding with increased computational cost. In this paper, an asynchronous lazy-evaluation token-group decoder with exact lattice generation is proposed to reduce the computational cost of the on-the-fly composition decoder, achieving significant decoding speedup. More specifically, having a novel token-group with a representative element data structure, the proposed decoder performs lazy-evaluation which expands the tokens until a word boundary is reached. Furthermore, based on the score of the representative element in a token-group, the decoder prunes unpromising tokens by an A* algorithm. The experiments show that the proposed decoder can accelerate the vanilla on-the-fly composition decoder by up to 6.9 times, and get paths with even better average likelihoods than lattice rescoring approaches.
期刊介绍:
Electronics Letters is an internationally renowned peer-reviewed rapid-communication journal that publishes short original research papers every two weeks. Its broad and interdisciplinary scope covers the latest developments in all electronic engineering related fields including communication, biomedical, optical and device technologies. Electronics Letters also provides further insight into some of the latest developments through special features and interviews.
Scope
As a journal at the forefront of its field, Electronics Letters publishes papers covering all themes of electronic and electrical engineering. The major themes of the journal are listed below.
Antennas and Propagation
Biomedical and Bioinspired Technologies, Signal Processing and Applications
Control Engineering
Electromagnetism: Theory, Materials and Devices
Electronic Circuits and Systems
Image, Video and Vision Processing and Applications
Information, Computing and Communications
Instrumentation and Measurement
Microwave Technology
Optical Communications
Photonics and Opto-Electronics
Power Electronics, Energy and Sustainability
Radar, Sonar and Navigation
Semiconductor Technology
Signal Processing
MIMO