Green Engineering of Silicon and Titanium Dioxide Architectures and Realizing Downstream Applications

IF 6.5 3区 材料科学 Q2 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
Adriaan Dirkzwager, Lloyd Mallee, Tim Groeneveld, Essi B. Quayson, Mohammed Al Qumber, Teresa van Dongen, Duncan G. G. McMillan
{"title":"Green Engineering of Silicon and Titanium Dioxide Architectures and Realizing Downstream Applications","authors":"Adriaan Dirkzwager,&nbsp;Lloyd Mallee,&nbsp;Tim Groeneveld,&nbsp;Essi B. Quayson,&nbsp;Mohammed Al Qumber,&nbsp;Teresa van Dongen,&nbsp;Duncan G. G. McMillan","doi":"10.1002/adsu.202400591","DOIUrl":null,"url":null,"abstract":"<p>Biomineralization has long been a source of inspiration and frustration for researchers in a wide variety of disciplines from ecologists and dental practitioners to materials scientists. An amazing variety of organisms have the capacity to produce inorganic mineral complexes through biomineralization. In this context, different organisms use proteins, peptides, and polysaccharides as templates to control the nucleation, growth, and morphology of structures containing minerals and metals. Due to lack of clarity in the field, distinctions are provided between the various biomineralization processes as Type I, II, and III biomineralization. Synthetic biomineralization is an emerging field in which these processes are applied to unnatural substrates to create useful inorganic materials with applications in a variety of fields. A comprehensive overview of silica and titanium oxide biomineralization is given, covering the major achievements this sub-field has attained since its emergence. The ground-breaking discoveries are focused based on the templating agent used and the mechanisms that are proposed in the field are discussed. Synthetic biomineralization are led, which are more recently demonstrated to have feasible applications in energy, electronics, construction, and biotechnology. These possibilities are discussed alongside prospects based on the current trend of research in the field.</p>","PeriodicalId":7294,"journal":{"name":"Advanced Sustainable Systems","volume":"9 2","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsu.202400591","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sustainable Systems","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adsu.202400591","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Biomineralization has long been a source of inspiration and frustration for researchers in a wide variety of disciplines from ecologists and dental practitioners to materials scientists. An amazing variety of organisms have the capacity to produce inorganic mineral complexes through biomineralization. In this context, different organisms use proteins, peptides, and polysaccharides as templates to control the nucleation, growth, and morphology of structures containing minerals and metals. Due to lack of clarity in the field, distinctions are provided between the various biomineralization processes as Type I, II, and III biomineralization. Synthetic biomineralization is an emerging field in which these processes are applied to unnatural substrates to create useful inorganic materials with applications in a variety of fields. A comprehensive overview of silica and titanium oxide biomineralization is given, covering the major achievements this sub-field has attained since its emergence. The ground-breaking discoveries are focused based on the templating agent used and the mechanisms that are proposed in the field are discussed. Synthetic biomineralization are led, which are more recently demonstrated to have feasible applications in energy, electronics, construction, and biotechnology. These possibilities are discussed alongside prospects based on the current trend of research in the field.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Sustainable Systems
Advanced Sustainable Systems Environmental Science-General Environmental Science
CiteScore
10.80
自引率
4.20%
发文量
186
期刊介绍: Advanced Sustainable Systems, a part of the esteemed Advanced portfolio, serves as an interdisciplinary sustainability science journal. It focuses on impactful research in the advancement of sustainable, efficient, and less wasteful systems and technologies. Aligned with the UN's Sustainable Development Goals, the journal bridges knowledge gaps between fundamental research, implementation, and policy-making. Covering diverse topics such as climate change, food sustainability, environmental science, renewable energy, water, urban development, and socio-economic challenges, it contributes to the understanding and promotion of sustainable systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信