Adriaan Dirkzwager, Lloyd Mallee, Tim Groeneveld, Essi B. Quayson, Mohammed Al Qumber, Teresa van Dongen, Duncan G. G. McMillan
{"title":"Green Engineering of Silicon and Titanium Dioxide Architectures and Realizing Downstream Applications","authors":"Adriaan Dirkzwager, Lloyd Mallee, Tim Groeneveld, Essi B. Quayson, Mohammed Al Qumber, Teresa van Dongen, Duncan G. G. McMillan","doi":"10.1002/adsu.202400591","DOIUrl":null,"url":null,"abstract":"<p>Biomineralization has long been a source of inspiration and frustration for researchers in a wide variety of disciplines from ecologists and dental practitioners to materials scientists. An amazing variety of organisms have the capacity to produce inorganic mineral complexes through biomineralization. In this context, different organisms use proteins, peptides, and polysaccharides as templates to control the nucleation, growth, and morphology of structures containing minerals and metals. Due to lack of clarity in the field, distinctions are provided between the various biomineralization processes as Type I, II, and III biomineralization. Synthetic biomineralization is an emerging field in which these processes are applied to unnatural substrates to create useful inorganic materials with applications in a variety of fields. A comprehensive overview of silica and titanium oxide biomineralization is given, covering the major achievements this sub-field has attained since its emergence. The ground-breaking discoveries are focused based on the templating agent used and the mechanisms that are proposed in the field are discussed. Synthetic biomineralization are led, which are more recently demonstrated to have feasible applications in energy, electronics, construction, and biotechnology. These possibilities are discussed alongside prospects based on the current trend of research in the field.</p>","PeriodicalId":7294,"journal":{"name":"Advanced Sustainable Systems","volume":"9 2","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsu.202400591","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sustainable Systems","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adsu.202400591","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Biomineralization has long been a source of inspiration and frustration for researchers in a wide variety of disciplines from ecologists and dental practitioners to materials scientists. An amazing variety of organisms have the capacity to produce inorganic mineral complexes through biomineralization. In this context, different organisms use proteins, peptides, and polysaccharides as templates to control the nucleation, growth, and morphology of structures containing minerals and metals. Due to lack of clarity in the field, distinctions are provided between the various biomineralization processes as Type I, II, and III biomineralization. Synthetic biomineralization is an emerging field in which these processes are applied to unnatural substrates to create useful inorganic materials with applications in a variety of fields. A comprehensive overview of silica and titanium oxide biomineralization is given, covering the major achievements this sub-field has attained since its emergence. The ground-breaking discoveries are focused based on the templating agent used and the mechanisms that are proposed in the field are discussed. Synthetic biomineralization are led, which are more recently demonstrated to have feasible applications in energy, electronics, construction, and biotechnology. These possibilities are discussed alongside prospects based on the current trend of research in the field.
期刊介绍:
Advanced Sustainable Systems, a part of the esteemed Advanced portfolio, serves as an interdisciplinary sustainability science journal. It focuses on impactful research in the advancement of sustainable, efficient, and less wasteful systems and technologies. Aligned with the UN's Sustainable Development Goals, the journal bridges knowledge gaps between fundamental research, implementation, and policy-making. Covering diverse topics such as climate change, food sustainability, environmental science, renewable energy, water, urban development, and socio-economic challenges, it contributes to the understanding and promotion of sustainable systems.