{"title":"A New Strategy for Photo-Electrochemical Reduction of Carbon Dioxide Using a Carbazole-BODIPY Based Metal-Free Catalyst","authors":"Mücahit Özdemir, Sude Uluçay, Sinem Altınışık, Baybars Köksoy, Bahattin Yalçın, Sermet Koyuncu","doi":"10.1002/adsu.202400812","DOIUrl":null,"url":null,"abstract":"<p>In this study, a cross-linked boron dipyrromethene (BODIPY) photocatalyst containing a carbazole donor group designed for photoelectrocatalytic carbon dioxide (CO<sub>2</sub>) reduction is synthesized and characterized. The BODIPY-based system, coated onto a platinum surface, is evaluated for its electrochemical and photocatalytic performance under light illumination. Cyclic voltammetry (CV) and chronoamperometry measurements reveals enhanced photocurrent responses, confirming the catalyst's ability to effectively drive CO<sub>2</sub> reduction. Gas chromatography/mass spectrometry (GC-MS) analysis identifies the formation of ethanol (C<sub>2</sub>H<sub>5</sub>OH) as a major reaction product, showing that its yield increased with extended reaction times. Additionally, the photocatalyst demonstrates remarkable performance with significantly increasing turnover numbers (TON) and turnover frequencies (TOF) over time, indicating stable and sustained catalytic activity. With a Faradaic efficiency of 34.79% at a potential of -1.15 V, this BODIPY system exhibits both high activity and long-term stability. The combination of efficient electron transfer and visible light absorption by the carbazole-BODIPY donor-acceptor structure positions this system as a highly promising candidate for sustainable CO<sub>2</sub> conversion applications.</p>","PeriodicalId":7294,"journal":{"name":"Advanced Sustainable Systems","volume":"9 2","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sustainable Systems","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adsu.202400812","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, a cross-linked boron dipyrromethene (BODIPY) photocatalyst containing a carbazole donor group designed for photoelectrocatalytic carbon dioxide (CO2) reduction is synthesized and characterized. The BODIPY-based system, coated onto a platinum surface, is evaluated for its electrochemical and photocatalytic performance under light illumination. Cyclic voltammetry (CV) and chronoamperometry measurements reveals enhanced photocurrent responses, confirming the catalyst's ability to effectively drive CO2 reduction. Gas chromatography/mass spectrometry (GC-MS) analysis identifies the formation of ethanol (C2H5OH) as a major reaction product, showing that its yield increased with extended reaction times. Additionally, the photocatalyst demonstrates remarkable performance with significantly increasing turnover numbers (TON) and turnover frequencies (TOF) over time, indicating stable and sustained catalytic activity. With a Faradaic efficiency of 34.79% at a potential of -1.15 V, this BODIPY system exhibits both high activity and long-term stability. The combination of efficient electron transfer and visible light absorption by the carbazole-BODIPY donor-acceptor structure positions this system as a highly promising candidate for sustainable CO2 conversion applications.
期刊介绍:
Advanced Sustainable Systems, a part of the esteemed Advanced portfolio, serves as an interdisciplinary sustainability science journal. It focuses on impactful research in the advancement of sustainable, efficient, and less wasteful systems and technologies. Aligned with the UN's Sustainable Development Goals, the journal bridges knowledge gaps between fundamental research, implementation, and policy-making. Covering diverse topics such as climate change, food sustainability, environmental science, renewable energy, water, urban development, and socio-economic challenges, it contributes to the understanding and promotion of sustainable systems.