Recent Decline in Global Ocean Evaporation Due To Wind Stilling

IF 4.6 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Ning Ma, Yongqiang Zhang, Yuting Yang
{"title":"Recent Decline in Global Ocean Evaporation Due To Wind Stilling","authors":"Ning Ma,&nbsp;Yongqiang Zhang,&nbsp;Yuting Yang","doi":"10.1029/2024GL114256","DOIUrl":null,"url":null,"abstract":"<p>Ocean evaporation (<i>E</i><sub>o</sub>) is the major source of atmospheric water vapor and precipitation. While it is widely recognized that <i>E</i><sub>o</sub> may increase in a warming climate, recent studies have reported a diminished increase in the global water vapor since ∼2000s, raising doubts about recent changes in <i>E</i><sub>o</sub>. Using satellite observations, here we show that while global <i>E</i><sub>o</sub> strongly increased from 1988 to 2017, the upward trend reversed in the late 2000s. Since then, two-thirds of the ocean have experienced weakened evaporation, leading to a slight decreasing trend in global-averaged <i>E</i><sub>o</sub> during 2008–2017. This suggests that even with saturated surface, a warmer climate does not always result in increased evaporation. The reversal in <i>E</i><sub>o</sub> trend is primarily attributed to wind stilling, which is likely tied to the Northern Oscillation Index shifting from positive to negative phases. These findings offer crucial insights into diverse responses of global hydrological cycle to climate change.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"52 4","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL114256","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GL114256","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ocean evaporation (Eo) is the major source of atmospheric water vapor and precipitation. While it is widely recognized that Eo may increase in a warming climate, recent studies have reported a diminished increase in the global water vapor since ∼2000s, raising doubts about recent changes in Eo. Using satellite observations, here we show that while global Eo strongly increased from 1988 to 2017, the upward trend reversed in the late 2000s. Since then, two-thirds of the ocean have experienced weakened evaporation, leading to a slight decreasing trend in global-averaged Eo during 2008–2017. This suggests that even with saturated surface, a warmer climate does not always result in increased evaporation. The reversal in Eo trend is primarily attributed to wind stilling, which is likely tied to the Northern Oscillation Index shifting from positive to negative phases. These findings offer crucial insights into diverse responses of global hydrological cycle to climate change.

Abstract Image

最近全球海洋蒸发量因风静止而下降
海洋蒸发(Eo)是大气水汽和降水的主要来源。虽然人们普遍认为暖化气候可能会增加暖化气候,但最近的研究报告称,自2000年代以来全球水蒸气的增加有所减少,这引起了人们对暖化气候最近变化的怀疑。通过卫星观测,我们发现,虽然1988年至2017年全球Eo强烈增加,但上升趋势在2000年代末发生逆转。从那时起,三分之二的海洋经历了减弱的蒸发,导致2008-2017年全球平均Eo略有下降趋势。这表明,即使地表饱和,气候变暖也不一定会导致蒸发增加。Eo趋势的逆转主要归因于风的静息,这可能与北涛动指数由正相位转向负相位有关。这些发现为全球水文循环对气候变化的不同响应提供了重要的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geophysical Research Letters
Geophysical Research Letters 地学-地球科学综合
CiteScore
9.00
自引率
9.60%
发文量
1588
审稿时长
2.2 months
期刊介绍: Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信