Intrinsic role of alkyl side chains in disorder, aggregates, and carrier mobility of nonfullerene acceptors for organic solar cells: A multiscale theoretical study

IF 13.9 Q1 CHEMISTRY, MULTIDISCIPLINARY
Rongkun Zhou, Chao Li, Zihao Wen, Chen Zhang, Yijie Shi, Hao Hou, Xiaoqing Chen, Qian Kang, Yongzhe Zhang, Hui Yan, Han Yu, Yi Zhao, Zilong Zheng, He Yan
{"title":"Intrinsic role of alkyl side chains in disorder, aggregates, and carrier mobility of nonfullerene acceptors for organic solar cells: A multiscale theoretical study","authors":"Rongkun Zhou,&nbsp;Chao Li,&nbsp;Zihao Wen,&nbsp;Chen Zhang,&nbsp;Yijie Shi,&nbsp;Hao Hou,&nbsp;Xiaoqing Chen,&nbsp;Qian Kang,&nbsp;Yongzhe Zhang,&nbsp;Hui Yan,&nbsp;Han Yu,&nbsp;Yi Zhao,&nbsp;Zilong Zheng,&nbsp;He Yan","doi":"10.1002/agt2.664","DOIUrl":null,"url":null,"abstract":"<p>Modifications to the alkyl side chains of Y6-type nonfullerene acceptors (NFAs) continuously break through the organic solar cells (OSCs) efficiency by enhancing electron mobility. However, the role of side chains in molecular aggregation and charge transport across different aggregates remains unclear. By employing a multiscale approach in combination with density functional theory (DFT), molecular dynamics (MD) simulations, and kinetic Monte Carlo (KMC), we addressed the issue of how side chains impact molecular aggregation, energy disorder, and the formation of near-macroscopic (∼0.3 µm) conductive network, which are critical for boosting electron mobility. Specifically, the side-chain structure greatly influences the un-conjugated enveloping effect on backbones within aggregates. The effect diminishes with longer linear side chains and is further minimized by using branched side chains. Though static energy disorder increased, the improved connectivity of the conductive network led to a notable increase in electron mobility (from 2.4 × 10<sup>−4</sup> to 3.9 × 10<sup>−4</sup> cm<sup>2</sup>·V<sup>−1</sup>·s<sup>−1</sup>). The findings offer insight into controlling molecular aggregation via alkyl side chains, which helps to further unlock the potential of Y6-type NFAs.</p>","PeriodicalId":72127,"journal":{"name":"Aggregate (Hoboken, N.J.)","volume":"6 2","pages":""},"PeriodicalIF":13.9000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agt2.664","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aggregate (Hoboken, N.J.)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/agt2.664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Modifications to the alkyl side chains of Y6-type nonfullerene acceptors (NFAs) continuously break through the organic solar cells (OSCs) efficiency by enhancing electron mobility. However, the role of side chains in molecular aggregation and charge transport across different aggregates remains unclear. By employing a multiscale approach in combination with density functional theory (DFT), molecular dynamics (MD) simulations, and kinetic Monte Carlo (KMC), we addressed the issue of how side chains impact molecular aggregation, energy disorder, and the formation of near-macroscopic (∼0.3 µm) conductive network, which are critical for boosting electron mobility. Specifically, the side-chain structure greatly influences the un-conjugated enveloping effect on backbones within aggregates. The effect diminishes with longer linear side chains and is further minimized by using branched side chains. Though static energy disorder increased, the improved connectivity of the conductive network led to a notable increase in electron mobility (from 2.4 × 10−4 to 3.9 × 10−4 cm2·V−1·s−1). The findings offer insight into controlling molecular aggregation via alkyl side chains, which helps to further unlock the potential of Y6-type NFAs.

Abstract Image

烷基侧链在有机太阳能电池非富勒烯受体的无序性、聚集性和载流子迁移性中的内在作用:多尺度理论研究
对y6型非富勒烯受体(nfa)烷基侧链的修饰通过提高电子迁移率不断突破有机太阳能电池(OSCs)的效率。然而,侧链在分子聚集和不同聚集物之间的电荷传输中的作用尚不清楚。通过采用多尺度方法结合密度泛函理论(DFT)、分子动力学(MD)模拟和动力学蒙特卡罗(KMC),我们解决了侧链如何影响分子聚集、能量紊乱和近宏观(~ 0.3µm)导电网络形成的问题,这对提高电子迁移率至关重要。具体来说,侧链结构对聚集体内部骨架的非共轭包络效应影响很大。较长的线性侧链会减弱这种效应,而使用支链侧链则会进一步减小这种效应。虽然静电能量紊乱增加,但导电网络连通性的改善导致电子迁移率显著增加(从2.4 × 10−4 cm2·V−1·s−1增加到3.9 × 10−4 cm2·V−1·s−1)。这些发现为通过烷基侧链控制分子聚集提供了见解,这有助于进一步释放y6型nfa的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
17.40
自引率
0.00%
发文量
0
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信