Luz Meza, Darpan Shukla, Hasan Sadeghifar, Lilian Hsiao, Yong Zhu, Richard A. Venditti
{"title":"Sustainable Soft Electronics with Biodegradable Regenerated Cellulose Films and Printed Recyclable Silver Nanowires","authors":"Luz Meza, Darpan Shukla, Hasan Sadeghifar, Lilian Hsiao, Yong Zhu, Richard A. Venditti","doi":"10.1002/adsu.202400713","DOIUrl":null,"url":null,"abstract":"<p>This study describes the production of biodegradable and recyclable flexible electronic devices created by screen-printing silver nanowires (AgNWs) onto regenerated cellulose films (RCFs). RCFs, derived from microcrystalline cellulose (MCC), are developed and further enhanced for flexibility with additives such as glycerol and poly(ethylene glycol) diglycidyl ether (PEGDE). The resulting cellulose films display relatively high tensile strength (up to 120 MPa), low Young's Modulus (down to 1500 MPa), and 90% optical transparency. Ink with AgNWs and poly(ethylene oxide) (PEO) as a binder is screen-printed on regenerated cellulose films. The printed AgNWs patterns exhibit high electrical conductivity, excellent electromechanical performance, and strong interfacial adhesion with RCFs. To demonstrate the application of printed AgNWs on RCFs for soft electronics, transparent conductive electrodes (TCEs) are fabricated. Grid and honeycomb structures are printed separately and evaluated in terms of sheet resistance and optical transparency. TCEs with ≈80% transparency and very low sheet resistance (0.045 Ω sq<sup>−1</sup>) are obtained. Furthermore, enzymatic hydrolysis of the cellulose substrate and the recovery for reuse of the AgNWs are demonstrated, showing the potential of integrating natural polymers and recyclable nanomaterials for eco-friendly and sustainable soft flexible electronics.</p>","PeriodicalId":7294,"journal":{"name":"Advanced Sustainable Systems","volume":"9 2","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sustainable Systems","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adsu.202400713","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study describes the production of biodegradable and recyclable flexible electronic devices created by screen-printing silver nanowires (AgNWs) onto regenerated cellulose films (RCFs). RCFs, derived from microcrystalline cellulose (MCC), are developed and further enhanced for flexibility with additives such as glycerol and poly(ethylene glycol) diglycidyl ether (PEGDE). The resulting cellulose films display relatively high tensile strength (up to 120 MPa), low Young's Modulus (down to 1500 MPa), and 90% optical transparency. Ink with AgNWs and poly(ethylene oxide) (PEO) as a binder is screen-printed on regenerated cellulose films. The printed AgNWs patterns exhibit high electrical conductivity, excellent electromechanical performance, and strong interfacial adhesion with RCFs. To demonstrate the application of printed AgNWs on RCFs for soft electronics, transparent conductive electrodes (TCEs) are fabricated. Grid and honeycomb structures are printed separately and evaluated in terms of sheet resistance and optical transparency. TCEs with ≈80% transparency and very low sheet resistance (0.045 Ω sq−1) are obtained. Furthermore, enzymatic hydrolysis of the cellulose substrate and the recovery for reuse of the AgNWs are demonstrated, showing the potential of integrating natural polymers and recyclable nanomaterials for eco-friendly and sustainable soft flexible electronics.
期刊介绍:
Advanced Sustainable Systems, a part of the esteemed Advanced portfolio, serves as an interdisciplinary sustainability science journal. It focuses on impactful research in the advancement of sustainable, efficient, and less wasteful systems and technologies. Aligned with the UN's Sustainable Development Goals, the journal bridges knowledge gaps between fundamental research, implementation, and policy-making. Covering diverse topics such as climate change, food sustainability, environmental science, renewable energy, water, urban development, and socio-economic challenges, it contributes to the understanding and promotion of sustainable systems.