Automated Mapping of Braided Palaeochannels From Optical Images With Deep Learning Methods

IF 3.5 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
F. Vanzani, P. Carbonneau, A. Fontana
{"title":"Automated Mapping of Braided Palaeochannels From Optical Images With Deep Learning Methods","authors":"F. Vanzani,&nbsp;P. Carbonneau,&nbsp;A. Fontana","doi":"10.1029/2024JF008051","DOIUrl":null,"url":null,"abstract":"<p>The increasing availability of remotely sensed data has provided an enormous quantity of information for studying the geomorphology of exposed surfaces of alluvial plains. In many cases, the key for reconstructing their formation lies in the recognition of optical traces related to abandoned palaeochannels and their morphometric characteristics. Abundant braided palaeohydrographic traces are documented in alluvial plains of northern Italy, where large sectors of the present surface correspond to landforms related to fluvioglacial systems supplied by Alpine glaciers during the Last Glacial Maximum (LGM). Nevertheless, the complexity of multichannel patterns, the overlapping field division systems and urbanization, hinder the efforts to manually map these traces. In this work, we used high-resolution aerial photos of the proximal sector of the Friulian Plain (NE Italy) to train an Attention-UNet deep learning algorithm to segment palaeohydrographic traces. The trained model was used to automatically recognize braided palaeochannels over 232 km<sup>2</sup>. The resulting map represents a significant step for investigating the long-term alluvial dynamics. Moreover, we assessed the robustness of our method by deploying the model in three other areas in northern Italy with comparable characteristics, as well as in Montenegro, near Podgorica. In each case, the braided pattern was successfully mapped by the algorithm. This work highlights the breakthrough potential of deep learning methods to rapidly detect complex geomorphological traces in cultivated plains, taking into consideration advantages, challenges and limitations.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"130 2","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JF008051","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Earth Surface","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JF008051","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing availability of remotely sensed data has provided an enormous quantity of information for studying the geomorphology of exposed surfaces of alluvial plains. In many cases, the key for reconstructing their formation lies in the recognition of optical traces related to abandoned palaeochannels and their morphometric characteristics. Abundant braided palaeohydrographic traces are documented in alluvial plains of northern Italy, where large sectors of the present surface correspond to landforms related to fluvioglacial systems supplied by Alpine glaciers during the Last Glacial Maximum (LGM). Nevertheless, the complexity of multichannel patterns, the overlapping field division systems and urbanization, hinder the efforts to manually map these traces. In this work, we used high-resolution aerial photos of the proximal sector of the Friulian Plain (NE Italy) to train an Attention-UNet deep learning algorithm to segment palaeohydrographic traces. The trained model was used to automatically recognize braided palaeochannels over 232 km2. The resulting map represents a significant step for investigating the long-term alluvial dynamics. Moreover, we assessed the robustness of our method by deploying the model in three other areas in northern Italy with comparable characteristics, as well as in Montenegro, near Podgorica. In each case, the braided pattern was successfully mapped by the algorithm. This work highlights the breakthrough potential of deep learning methods to rapidly detect complex geomorphological traces in cultivated plains, taking into consideration advantages, challenges and limitations.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Earth Surface
Journal of Geophysical Research: Earth Surface Earth and Planetary Sciences-Earth-Surface Processes
CiteScore
6.30
自引率
10.30%
发文量
162
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信