Yongliang Wang, Kang Wang, Xiaohui Zhou, Bin Dai, Daozhong Du
{"title":"New Insight into Potassium Ferrate Enhancing the Production of Volatile Fatty Acids by Co-Fermentation of Excess Sludge and Plant Waste","authors":"Yongliang Wang, Kang Wang, Xiaohui Zhou, Bin Dai, Daozhong Du","doi":"10.1007/s11270-025-07814-5","DOIUrl":null,"url":null,"abstract":"<div><p>Excess sludge (ES) and plant waste (PW) are two typical organic solid wastes in urban areas, and their co-fermentation is one of the key strategies in the circular economy. This study innovatively investigated the impact of the oxidant potassium ferrate (PF) on the anaerobic co-fermentation of ES and PW for the production of volatile fatty acids (VFAs) and elucidated the underlying mechanisms. The results indicated that PF could enhance the co-fermentation of ES and PW to produce VFAs, with an optimal dosage of 0.06 g/g (based on total suspended solids), yielding a maximum VFAs production of 261 mg chemical oxygen demand (COD)/g volatile suspended solids (VSS), which is 2.1 times that of the control group. High doses of PF inhibited microbial metabolism, reducing VFAs production, but still higher than the control group. PF effectively promoted the solubilization of organic matter in the ES and PW co-digestion system, increasing the concentrations of soluble COD, soluble protein, and soluble polysaccharides, with higher PF concentrations leading to more significant solubilization of available organic matter. PF increased the content of loosely bound extracellular polymeric substances (EPS) but decreased the content of tightly bound EPS. The oxidizing nature of PF suppressed the production of biogas, with only 99.5 mL/g VSS produced in the 0.08 g/g PF group. PF stimulated the concentration of ammonium nitrogen in the fermentation liquid of the co-digestion system but decreased the concentration of soluble phosphate.</p></div>","PeriodicalId":808,"journal":{"name":"Water, Air, & Soil Pollution","volume":"236 3","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water, Air, & Soil Pollution","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s11270-025-07814-5","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Excess sludge (ES) and plant waste (PW) are two typical organic solid wastes in urban areas, and their co-fermentation is one of the key strategies in the circular economy. This study innovatively investigated the impact of the oxidant potassium ferrate (PF) on the anaerobic co-fermentation of ES and PW for the production of volatile fatty acids (VFAs) and elucidated the underlying mechanisms. The results indicated that PF could enhance the co-fermentation of ES and PW to produce VFAs, with an optimal dosage of 0.06 g/g (based on total suspended solids), yielding a maximum VFAs production of 261 mg chemical oxygen demand (COD)/g volatile suspended solids (VSS), which is 2.1 times that of the control group. High doses of PF inhibited microbial metabolism, reducing VFAs production, but still higher than the control group. PF effectively promoted the solubilization of organic matter in the ES and PW co-digestion system, increasing the concentrations of soluble COD, soluble protein, and soluble polysaccharides, with higher PF concentrations leading to more significant solubilization of available organic matter. PF increased the content of loosely bound extracellular polymeric substances (EPS) but decreased the content of tightly bound EPS. The oxidizing nature of PF suppressed the production of biogas, with only 99.5 mL/g VSS produced in the 0.08 g/g PF group. PF stimulated the concentration of ammonium nitrogen in the fermentation liquid of the co-digestion system but decreased the concentration of soluble phosphate.
期刊介绍:
Water, Air, & Soil Pollution is an international, interdisciplinary journal on all aspects of pollution and solutions to pollution in the biosphere. This includes chemical, physical and biological processes affecting flora, fauna, water, air and soil in relation to environmental pollution. Because of its scope, the subject areas are diverse and include all aspects of pollution sources, transport, deposition, accumulation, acid precipitation, atmospheric pollution, metals, aquatic pollution including marine pollution and ground water, waste water, pesticides, soil pollution, sewage, sediment pollution, forestry pollution, effects of pollutants on humans, vegetation, fish, aquatic species, micro-organisms, and animals, environmental and molecular toxicology applied to pollution research, biosensors, global and climate change, ecological implications of pollution and pollution models. Water, Air, & Soil Pollution also publishes manuscripts on novel methods used in the study of environmental pollutants, environmental toxicology, environmental biology, novel environmental engineering related to pollution, biodiversity as influenced by pollution, novel environmental biotechnology as applied to pollution (e.g. bioremediation), environmental modelling and biorestoration of polluted environments.
Articles should not be submitted that are of local interest only and do not advance international knowledge in environmental pollution and solutions to pollution. Articles that simply replicate known knowledge or techniques while researching a local pollution problem will normally be rejected without review. Submitted articles must have up-to-date references, employ the correct experimental replication and statistical analysis, where needed and contain a significant contribution to new knowledge. The publishing and editorial team sincerely appreciate your cooperation.
Water, Air, & Soil Pollution publishes research papers; review articles; mini-reviews; and book reviews.