{"title":"Passive-state preparation for quantum secure direct communication","authors":"Jia-Wei Ying, Jin-Yu Wang, Yu-Xiang Xiao, Shi-Pu Gu, Xing-Fu Wang, Wei Zhong, Ming-Ming Du, Xi-Yun Li, Shu-Ting Shen, An-Lei Zhang, Lan Zhou, Yu-Bo Sheng","doi":"10.1007/s11433-024-2578-0","DOIUrl":null,"url":null,"abstract":"<div><p>Quantum secure direct communication (QSDC) can transmit the secret message directly. Single-photon-based QSDC protocol requires the active modulation of the quantum state of the source, potentially introducing various side-channel vulnerabilities. In this paper, we propose a passive-state preparation QSDC protocol. By utilizing a passive-state preparation method, we remove the need for active modulation, thus eliminating the side-channel risks associated with the source encoder. To evaluate the performance of the protocol, we develop a system model and improve the decoy state method. Through parameter optimization, we identify the optimal secrecy message capacity for various communication distances and compare it with active modulation QSDC. At a communication distance of 10 (15) km, the secrecy message capacity of passive-state preparation QSDC reaches 3.894 × 10<sup>−4</sup> (3.715 × 10<sup>−5</sup>) bit/pulse, achieving 95.3% (91.5%) of the active case’s performance. Meanwhile, we consider the resource consumption and optimize the secrecy message transmission rate of passive-state preparation QSDC. Using a coherent light source with a frequency of 10<sup>6</sup> Hz, at communication distances of 5, 10, and 15 km, the secrecy message transmission rates for passive-state preparation QSDC reach 2.370 × 10<sup>2</sup>, 4.218 × 10, and 2.504 bit/s, respectively.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 4","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Physics, Mechanics & Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11433-024-2578-0","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum secure direct communication (QSDC) can transmit the secret message directly. Single-photon-based QSDC protocol requires the active modulation of the quantum state of the source, potentially introducing various side-channel vulnerabilities. In this paper, we propose a passive-state preparation QSDC protocol. By utilizing a passive-state preparation method, we remove the need for active modulation, thus eliminating the side-channel risks associated with the source encoder. To evaluate the performance of the protocol, we develop a system model and improve the decoy state method. Through parameter optimization, we identify the optimal secrecy message capacity for various communication distances and compare it with active modulation QSDC. At a communication distance of 10 (15) km, the secrecy message capacity of passive-state preparation QSDC reaches 3.894 × 10−4 (3.715 × 10−5) bit/pulse, achieving 95.3% (91.5%) of the active case’s performance. Meanwhile, we consider the resource consumption and optimize the secrecy message transmission rate of passive-state preparation QSDC. Using a coherent light source with a frequency of 106 Hz, at communication distances of 5, 10, and 15 km, the secrecy message transmission rates for passive-state preparation QSDC reach 2.370 × 102, 4.218 × 10, and 2.504 bit/s, respectively.
期刊介绍:
Science China Physics, Mechanics & Astronomy, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research.
Science China Physics, Mechanics & Astronomy, is published in both print and electronic forms. It is indexed by Science Citation Index.
Categories of articles:
Reviews summarize representative results and achievements in a particular topic or an area, comment on the current state of research, and advise on the research directions. The author’s own opinion and related discussion is requested.
Research papers report on important original results in all areas of physics, mechanics and astronomy.
Brief reports present short reports in a timely manner of the latest important results.