{"title":"Trophic niche interactions among native and non-native fish species vary spatially in one of the world's largest reservoirs","authors":"Chuansong Liao, Mayara Pereira Neves, Sandra Bibiana Correa, Xiaoyan Qin, Mantang Xiong, Chao Guo, Wei Li, Jing Yuan, Chuanbo Guo, Jiashou Liu","doi":"10.1007/s00027-025-01171-5","DOIUrl":null,"url":null,"abstract":"<div><p>The invader density impact model proposes that the impact of an invasive species may increase or decrease linearly or nonlinearly as a function of its density. The Three Gorges Reservoir (TGR), located in the upper Yangtze River Basin, supports high fish diversity, yet non-native fish species have increasingly colonized and expanded their ranges. Pelagic carnivorous <i>Coilia brachygnathus</i> (Engraulidae), native to the middle and lower reaches of the Yangtze River Basin, has colonized and rapidly expanded into the TGR, whereas its density decreases with distance from the dam. Here, we used stable isotopes to investigate similarities in trophic position, niche width, and niche overlap of <i>C. brachygnathus</i> and eight native pelagic species between the lower and upper sections of the TGR. We predicted that in higher density, <i>C. brachygnathus</i> would broaden the trophic niche, while native species would narrow theirs, reducing interspecific niche overlap. We found that <i>C. brachygnathus</i> had a narrower trophic niche in the lower section of the TGR where its density was higher. In contrast, most native species had broader niche widths than those in the upper section where the density of <i>C. brachygnathus</i> was lower. Interestingly, <i>C. brachygnathus</i> has a higher trophic position than those of most native species examined, and the trophic positions of most native species were lower in the lower section. Higher niche overlap was observed between <i>C. brachygnathus</i> and native piscivorous <i>Culter</i> spp. (Cyprinidae) in the upper section. Our findings indicate that <i>C. brachygnathus</i> influences trophic niches of native species, and the density of <i>C. brachygnathus</i> mediates the effects. Under higher density, <i>C. brachygnathus</i> and native species adjust niche width and trophic positions, consequently reducing niche overlap to alleviate competition pressure.</p></div>","PeriodicalId":55489,"journal":{"name":"Aquatic Sciences","volume":"87 2","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00027-025-01171-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Sciences","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s00027-025-01171-5","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The invader density impact model proposes that the impact of an invasive species may increase or decrease linearly or nonlinearly as a function of its density. The Three Gorges Reservoir (TGR), located in the upper Yangtze River Basin, supports high fish diversity, yet non-native fish species have increasingly colonized and expanded their ranges. Pelagic carnivorous Coilia brachygnathus (Engraulidae), native to the middle and lower reaches of the Yangtze River Basin, has colonized and rapidly expanded into the TGR, whereas its density decreases with distance from the dam. Here, we used stable isotopes to investigate similarities in trophic position, niche width, and niche overlap of C. brachygnathus and eight native pelagic species between the lower and upper sections of the TGR. We predicted that in higher density, C. brachygnathus would broaden the trophic niche, while native species would narrow theirs, reducing interspecific niche overlap. We found that C. brachygnathus had a narrower trophic niche in the lower section of the TGR where its density was higher. In contrast, most native species had broader niche widths than those in the upper section where the density of C. brachygnathus was lower. Interestingly, C. brachygnathus has a higher trophic position than those of most native species examined, and the trophic positions of most native species were lower in the lower section. Higher niche overlap was observed between C. brachygnathus and native piscivorous Culter spp. (Cyprinidae) in the upper section. Our findings indicate that C. brachygnathus influences trophic niches of native species, and the density of C. brachygnathus mediates the effects. Under higher density, C. brachygnathus and native species adjust niche width and trophic positions, consequently reducing niche overlap to alleviate competition pressure.
期刊介绍:
Aquatic Sciences – Research Across Boundaries publishes original research, overviews, and reviews dealing with aquatic systems (both freshwater and marine systems) and their boundaries, including the impact of human activities on these systems. The coverage ranges from molecular-level mechanistic studies to investigations at the whole ecosystem scale. Aquatic Sciences publishes articles presenting research across disciplinary and environmental boundaries, including studies examining interactions among geological, microbial, biological, chemical, physical, hydrological, and societal processes, as well as studies assessing land-water, air-water, benthic-pelagic, river-ocean, lentic-lotic, and groundwater-surface water interactions.