An Attention Minimal Gated Unit-Based Causality Analysis Framework for Root Cause Diagnosis of Faults in Nonstationary Industrial Processes

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Liang Ma;Yifei Peng;Kaixiang Peng
{"title":"An Attention Minimal Gated Unit-Based Causality Analysis Framework for Root Cause Diagnosis of Faults in Nonstationary Industrial Processes","authors":"Liang Ma;Yifei Peng;Kaixiang Peng","doi":"10.1109/JSEN.2024.3524388","DOIUrl":null,"url":null,"abstract":"Root cause diagnosis is an important part of the fault diagnosis framework, which is often used to locate the root causes and identify the propagation paths. Most of the traditional root cause diagnosis methods consider the time series of industrial processes to be stationary or nearly stationary after faults occur. Since fault information is often propagated according to the causalities between process variables, and the pseudo-regression caused by nonstationary characteristics is not conducive to correct causality analysis, further affects the root cause diagnosis performance. Associated with those trends, in this article, a new causality analysis framework is proposed for root cause diagnosis of faults in nonstationary industrial processes. Specifically, the augmented Dickey-Fuller (ADF) test is first used to determine the stationarity of the time series, and the combination method of cointegration analysis (CA) and higher order difference is used for extracting the stationarity factors from nonstationary time series. Then, an attention minimal gated unit (AMGU)-based nonlinear dynamic causality analysis method is developed for causal topology construction and root cause diagnosis. Finally, industrial verifications on two datasets from actual hot rolling processes (HRPs) show that the proposed scheme is feasible, and is superior to competitive methods in terms of solving the issues of root cause diagnosis of faults in nonstationary industrial processes.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 4","pages":"6952-6966"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10832522/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Root cause diagnosis is an important part of the fault diagnosis framework, which is often used to locate the root causes and identify the propagation paths. Most of the traditional root cause diagnosis methods consider the time series of industrial processes to be stationary or nearly stationary after faults occur. Since fault information is often propagated according to the causalities between process variables, and the pseudo-regression caused by nonstationary characteristics is not conducive to correct causality analysis, further affects the root cause diagnosis performance. Associated with those trends, in this article, a new causality analysis framework is proposed for root cause diagnosis of faults in nonstationary industrial processes. Specifically, the augmented Dickey-Fuller (ADF) test is first used to determine the stationarity of the time series, and the combination method of cointegration analysis (CA) and higher order difference is used for extracting the stationarity factors from nonstationary time series. Then, an attention minimal gated unit (AMGU)-based nonlinear dynamic causality analysis method is developed for causal topology construction and root cause diagnosis. Finally, industrial verifications on two datasets from actual hot rolling processes (HRPs) show that the proposed scheme is feasible, and is superior to competitive methods in terms of solving the issues of root cause diagnosis of faults in nonstationary industrial processes.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信