A Study of Epileptogenic Foci Localization Algorithm Based on Automatic Detection of Comprehensive Feature HFOs and RF-LR

IF 1.6 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Yuxiao Du;Gaoming Li
{"title":"A Study of Epileptogenic Foci Localization Algorithm Based on Automatic Detection of Comprehensive Feature HFOs and RF-LR","authors":"Yuxiao Du;Gaoming Li","doi":"10.23919/cje.2023.00.213","DOIUrl":null,"url":null,"abstract":"Studies have shown that fast ripples of 250–500 Hz in epileptic electroencephalography (EEG) signals are more pathological and closer to the epileptogenic focus itself compared to ripples of 80–250 Hz. However, artifacts of fast ripples and high-frequency oscillations (HFOs) are easily confused and difficult to discriminate, and manual visual screening is both time-consuming and unable to avoid subjectivity. To this end, this paper presents a method for localizing epileptogenic foci based on the automatic detection of integrated feature HFOs and random forest-logistic regression (RF-LR). In this paper, we first extract multivariate features from the preprocessed epileptic EEG signals, and use the random forest algorithm to filter out three features with high importance, based on which, suspicious leads containing HFOs are identified. Then, wavelet time-frequency maps were used for the primary screening of suspected leads to improve the signal calibration efficiency and further localize HFOs in time and frequency. Finally, a logistic regression model was used to automatically classify and identify ripples and fast ripples in HFOs. The results show that the sensitivity, specificity, and accuracy of the model for detecting ripple are 89.37%, 88.26%, and 90.1%, respectively; the sensitivity, specificity, and accuracy for detecting fast ripple are 94.31%, 94.83%, and 93.46%, respectively. Compared with single features, the multivariate features in this paper more comprehensively characterize the complex epileptic EEG signals and provide more accurate information for the localization of epileptogenic foci. The automatic detection algorithm of HFOs proposed in this paper can analyze a large amount of data in a short time and has a good detection performance, which can help clinicians accurately determine the region of epileptogenic foci.","PeriodicalId":50701,"journal":{"name":"Chinese Journal of Electronics","volume":"34 1","pages":"338-349"},"PeriodicalIF":1.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10891998","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Electronics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10891998/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Studies have shown that fast ripples of 250–500 Hz in epileptic electroencephalography (EEG) signals are more pathological and closer to the epileptogenic focus itself compared to ripples of 80–250 Hz. However, artifacts of fast ripples and high-frequency oscillations (HFOs) are easily confused and difficult to discriminate, and manual visual screening is both time-consuming and unable to avoid subjectivity. To this end, this paper presents a method for localizing epileptogenic foci based on the automatic detection of integrated feature HFOs and random forest-logistic regression (RF-LR). In this paper, we first extract multivariate features from the preprocessed epileptic EEG signals, and use the random forest algorithm to filter out three features with high importance, based on which, suspicious leads containing HFOs are identified. Then, wavelet time-frequency maps were used for the primary screening of suspected leads to improve the signal calibration efficiency and further localize HFOs in time and frequency. Finally, a logistic regression model was used to automatically classify and identify ripples and fast ripples in HFOs. The results show that the sensitivity, specificity, and accuracy of the model for detecting ripple are 89.37%, 88.26%, and 90.1%, respectively; the sensitivity, specificity, and accuracy for detecting fast ripple are 94.31%, 94.83%, and 93.46%, respectively. Compared with single features, the multivariate features in this paper more comprehensively characterize the complex epileptic EEG signals and provide more accurate information for the localization of epileptogenic foci. The automatic detection algorithm of HFOs proposed in this paper can analyze a large amount of data in a short time and has a good detection performance, which can help clinicians accurately determine the region of epileptogenic foci.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chinese Journal of Electronics
Chinese Journal of Electronics 工程技术-工程:电子与电气
CiteScore
3.70
自引率
16.70%
发文量
342
审稿时长
12.0 months
期刊介绍: CJE focuses on the emerging fields of electronics, publishing innovative and transformative research papers. Most of the papers published in CJE are from universities and research institutes, presenting their innovative research results. Both theoretical and practical contributions are encouraged, and original research papers reporting novel solutions to the hot topics in electronics are strongly recommended.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信