HiFiMSFA: Robust and High-Fidelity Image Watermarking Using Attention Augmented Deep Network

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Yulin Zhang;Jiangqun Ni;Wenkang Su
{"title":"HiFiMSFA: Robust and High-Fidelity Image Watermarking Using Attention Augmented Deep Network","authors":"Yulin Zhang;Jiangqun Ni;Wenkang Su","doi":"10.1109/LSP.2025.3535216","DOIUrl":null,"url":null,"abstract":"In recent years, the popularity of digital media sharing, especially high-quality images through online social networks (OSNs) has spurred an increasing demand for digital rights management (DRM) with watermarking. Although the most recent watermarking schemes with deep networks have exhibited considerable performance improvement, they still fall short in resisting multiple attacks with high-fidelity watermarking. To tackle this issue, a customized framework with encoder/decoder structure is proposed in this letter, aiming to consistently improve the robustness performance against multiple attacks. In specific, the <bold>M</b>ulti-scale <bold>S</b>alient <bold>F</b>eature <bold>A</b>ttention <bold>Block</b> (MSFABlock) is exploited to effectively extract the robust image features with the encoder and decoder by taking advantage of the salient features, e.g., the image features obtained with difference of Gaussian (DoG) and other gradient operators. In addition, an adaptive squared Hinge function is developed as message loss to encourage adaptive watermark embedding. Experimental results demonstrate excellent performance in terms of robustness and perceptual fidelity as well as high efficiency of the proposed scheme in comparison to other SOTA methods.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"781-785"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10856323/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, the popularity of digital media sharing, especially high-quality images through online social networks (OSNs) has spurred an increasing demand for digital rights management (DRM) with watermarking. Although the most recent watermarking schemes with deep networks have exhibited considerable performance improvement, they still fall short in resisting multiple attacks with high-fidelity watermarking. To tackle this issue, a customized framework with encoder/decoder structure is proposed in this letter, aiming to consistently improve the robustness performance against multiple attacks. In specific, the Multi-scale Salient Feature Attention Block (MSFABlock) is exploited to effectively extract the robust image features with the encoder and decoder by taking advantage of the salient features, e.g., the image features obtained with difference of Gaussian (DoG) and other gradient operators. In addition, an adaptive squared Hinge function is developed as message loss to encourage adaptive watermark embedding. Experimental results demonstrate excellent performance in terms of robustness and perceptual fidelity as well as high efficiency of the proposed scheme in comparison to other SOTA methods.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信