Bi-Scale density-plot enhancement based on variance-aware filter

IF 2.5 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Huaiwei Bao , Xin Chen , Kecheng Lu , Chi-Wing Fu , Jean-Daniel Fekete , Yunhai Wang
{"title":"Bi-Scale density-plot enhancement based on variance-aware filter","authors":"Huaiwei Bao ,&nbsp;Xin Chen ,&nbsp;Kecheng Lu ,&nbsp;Chi-Wing Fu ,&nbsp;Jean-Daniel Fekete ,&nbsp;Yunhai Wang","doi":"10.1016/j.cag.2025.104180","DOIUrl":null,"url":null,"abstract":"<div><div>We present Bi-Scale density Plot (BSP), a new technique to enhance density plots by efficiently optimizing the local density variance in high- and mid-density regions while providing more details in low-density regions. When visualizing large and dense discrete point samples, scatterplots and thematic maps are often employed and we need density plots to further provide aggregated views. However, in the density plots, local patterns such as outliers can be filtered out and meaningful structures such as local density variations can be broken down. The key innovations in BSP include (i) the unified bin–summarize–decompose–combine framework for interactively bi-scale enhancing density plots through combining large- and small-scale density variations; and (ii) the variance-aware filter, which is reformulated based on the edge-preserving image filter, for maintaining the relative data density while reducing the excessive variability in the density plot. Further, BSP can be adopted with a 2D colormap, allowing simultaneous exploration of the enhanced structures and recovering the absolute aggregated densities to improve comparison and lookup tasks. We empirically evaluate our techniques in a controlled study and present two case studies to demonstrate their effectiveness in exploring large data.</div></div>","PeriodicalId":50628,"journal":{"name":"Computers & Graphics-Uk","volume":"127 ","pages":"Article 104180"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Graphics-Uk","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097849325000196","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

We present Bi-Scale density Plot (BSP), a new technique to enhance density plots by efficiently optimizing the local density variance in high- and mid-density regions while providing more details in low-density regions. When visualizing large and dense discrete point samples, scatterplots and thematic maps are often employed and we need density plots to further provide aggregated views. However, in the density plots, local patterns such as outliers can be filtered out and meaningful structures such as local density variations can be broken down. The key innovations in BSP include (i) the unified bin–summarize–decompose–combine framework for interactively bi-scale enhancing density plots through combining large- and small-scale density variations; and (ii) the variance-aware filter, which is reformulated based on the edge-preserving image filter, for maintaining the relative data density while reducing the excessive variability in the density plot. Further, BSP can be adopted with a 2D colormap, allowing simultaneous exploration of the enhanced structures and recovering the absolute aggregated densities to improve comparison and lookup tasks. We empirically evaluate our techniques in a controlled study and present two case studies to demonstrate their effectiveness in exploring large data.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Graphics-Uk
Computers & Graphics-Uk 工程技术-计算机:软件工程
CiteScore
5.30
自引率
12.00%
发文量
173
审稿时长
38 days
期刊介绍: Computers & Graphics is dedicated to disseminate information on research and applications of computer graphics (CG) techniques. The journal encourages articles on: 1. Research and applications of interactive computer graphics. We are particularly interested in novel interaction techniques and applications of CG to problem domains. 2. State-of-the-art papers on late-breaking, cutting-edge research on CG. 3. Information on innovative uses of graphics principles and technologies. 4. Tutorial papers on both teaching CG principles and innovative uses of CG in education.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信