Predictive validity of consensus-based MRI definition of osteoarthritis plus radiographic osteoarthritis for the progression of knee osteoarthritis: A longitudinal cohort study

Xing Xing , Yining Wang , Jianan Zhu , Ziyuan Shen , Flavia Cicuttini , Graeme Jones , Dawn Aitken , Guoqi Cai
{"title":"Predictive validity of consensus-based MRI definition of osteoarthritis plus radiographic osteoarthritis for the progression of knee osteoarthritis: A longitudinal cohort study","authors":"Xing Xing ,&nbsp;Yining Wang ,&nbsp;Jianan Zhu ,&nbsp;Ziyuan Shen ,&nbsp;Flavia Cicuttini ,&nbsp;Graeme Jones ,&nbsp;Dawn Aitken ,&nbsp;Guoqi Cai","doi":"10.1016/j.ocarto.2025.100582","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>Our previous study showed that magnetic resonance imaging (MRI)-defined tibiofemoral osteoarthritis (MRI-OA), based on a Delphi approach, in combination with radiographic OA (ROA) had a strong predictive validity for the progression of knee OA. This study aimed to compare whether the combination using traditional prediction models was superior to the Light Gradient Boosting Machine (LightGBM) models.</div></div><div><h3>Methods</h3><div>Data were from the Tasmanian Older Adult Cohort. A radiograph and 1.5T MRI of the right knee was performed. Tibial cartilage volume was measured at baseline, 2.6 and 10.7 years. Knee pain and function were assessed at baseline, 2.6, 5.1, and 10.7 years. Right-sided total knee replacement (TKR) were assessed over 13.5 years. The area under the curve (AUC) was applied to compare the predictive validity of logistic regression with the LightGBM algorithm. For significant imbalanced outcomes, the area under the precision-recall curve (AUC-PR) was used.</div></div><div><h3>Results</h3><div>574 participants (mean 62 years, 49 ​% female) were included. Overall, the LightGBM showed a clinically acceptable predictive performance for all outcomes but TKR. For knee pain and function, LightGBM showed better predictive performance than logistic regression model (AUC: 0.731–0.912 vs 0.627–0.755). Similar results were found for tibial cartilage loss over 2.6 (AUC: 0.845 vs 0.701, p ​&lt; ​0.001) and 10.7 years (AUC: 0.845 vs 0.753, p ​= ​0.016). For TKR, which exhibited significant class imbalance, both algorithms performed poorly (AUC-PR: 0.647 vs 0.610).</div></div><div><h3>Conclusion</h3><div>Compared to logistic regression combining MRI-OA, ROA, and common covariates, LightGBM offers valuable insights that can inform early risk identification and targeted prevention strategies.</div></div>","PeriodicalId":74377,"journal":{"name":"Osteoarthritis and cartilage open","volume":"7 2","pages":"Article 100582"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Osteoarthritis and cartilage open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665913125000184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective

Our previous study showed that magnetic resonance imaging (MRI)-defined tibiofemoral osteoarthritis (MRI-OA), based on a Delphi approach, in combination with radiographic OA (ROA) had a strong predictive validity for the progression of knee OA. This study aimed to compare whether the combination using traditional prediction models was superior to the Light Gradient Boosting Machine (LightGBM) models.

Methods

Data were from the Tasmanian Older Adult Cohort. A radiograph and 1.5T MRI of the right knee was performed. Tibial cartilage volume was measured at baseline, 2.6 and 10.7 years. Knee pain and function were assessed at baseline, 2.6, 5.1, and 10.7 years. Right-sided total knee replacement (TKR) were assessed over 13.5 years. The area under the curve (AUC) was applied to compare the predictive validity of logistic regression with the LightGBM algorithm. For significant imbalanced outcomes, the area under the precision-recall curve (AUC-PR) was used.

Results

574 participants (mean 62 years, 49 ​% female) were included. Overall, the LightGBM showed a clinically acceptable predictive performance for all outcomes but TKR. For knee pain and function, LightGBM showed better predictive performance than logistic regression model (AUC: 0.731–0.912 vs 0.627–0.755). Similar results were found for tibial cartilage loss over 2.6 (AUC: 0.845 vs 0.701, p ​< ​0.001) and 10.7 years (AUC: 0.845 vs 0.753, p ​= ​0.016). For TKR, which exhibited significant class imbalance, both algorithms performed poorly (AUC-PR: 0.647 vs 0.610).

Conclusion

Compared to logistic regression combining MRI-OA, ROA, and common covariates, LightGBM offers valuable insights that can inform early risk identification and targeted prevention strategies.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Osteoarthritis and cartilage open
Osteoarthritis and cartilage open Orthopedics, Sports Medicine and Rehabilitation
CiteScore
3.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信