AI culture ‘profiling’ and anti-money laundering: Efficacy vs ethics

IF 7.5 1区 经济学 Q1 BUSINESS, FINANCE
John W. Goodell , Cal B. Muckley , Parvati Neelakantan , Darragh Ryan , Pei-Shan Yu
{"title":"AI culture ‘profiling’ and anti-money laundering: Efficacy vs ethics","authors":"John W. Goodell ,&nbsp;Cal B. Muckley ,&nbsp;Parvati Neelakantan ,&nbsp;Darragh Ryan ,&nbsp;Pei-Shan Yu","doi":"10.1016/j.irfa.2025.103980","DOIUrl":null,"url":null,"abstract":"<div><div>Using extensive transaction and money laundering detection data, at a globally important financial institution, we investigate the efficacy of including facets of national culture in formulating anti-money laundering predictions. For corporate and individual accounts, Hofstede individualism scores of the country in which a customer is resident, or from which a wire is sent/received, are of first-order importance in the detection of money laundering. When combined with account and transaction data; as well as even a proprietary institutional algorithm, individualism scores continue to determine the models’ predictive performances. The efficacy of cultural profiling in money laundering detection underscores the need for stringent and enforced data protection to prohibit its use. This will safeguard the civil right of individuals to privacy and promote financial inclusion.</div></div>","PeriodicalId":48226,"journal":{"name":"International Review of Financial Analysis","volume":"101 ","pages":"Article 103980"},"PeriodicalIF":7.5000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Review of Financial Analysis","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1057521925000675","RegionNum":1,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

Using extensive transaction and money laundering detection data, at a globally important financial institution, we investigate the efficacy of including facets of national culture in formulating anti-money laundering predictions. For corporate and individual accounts, Hofstede individualism scores of the country in which a customer is resident, or from which a wire is sent/received, are of first-order importance in the detection of money laundering. When combined with account and transaction data; as well as even a proprietary institutional algorithm, individualism scores continue to determine the models’ predictive performances. The efficacy of cultural profiling in money laundering detection underscores the need for stringent and enforced data protection to prohibit its use. This will safeguard the civil right of individuals to privacy and promote financial inclusion.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.30
自引率
9.80%
发文量
366
期刊介绍: The International Review of Financial Analysis (IRFA) is an impartial refereed journal designed to serve as a platform for high-quality financial research. It welcomes a diverse range of financial research topics and maintains an unbiased selection process. While not limited to U.S.-centric subjects, IRFA, as its title suggests, is open to valuable research contributions from around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信