{"title":"Micro- and nano-plastics pollution in the marine environment: Progresses, drawbacks and future guidelines","authors":"Sesan Abiodun Aransiola , Munachimso Odenakachi Victor-Ekwebelem , Bryan Xavier Daza , Peter Olusakin Oladoye , Yakubu Adekunle Alli , Abayomi Bamisaye , Adejoke Blessing Aransiola , Samuel Oluwadadepo Oni , Naga Raju Maddela","doi":"10.1016/j.chemosphere.2025.144211","DOIUrl":null,"url":null,"abstract":"<div><div>Marine pollution by micro/nanoplastics (M/NPs) has emerged as a critical global issue, with widespread ecological and economic consequences. Numerous studies have investigated M/NPs pollution in marine environments, but there remains a need to assess progress, identify challenges, and propose future strategies. This review provides updated insights into marine M/NPs, including their sources, detection methods, global data from diverse marine ecosystems, and the challenges in mitigating pollution. The review reveals that the ocean harbors approximately 5.25 trillion plastic debris pieces, with a total of 50–75 trillion plastic and microplastic particles, with deep-sea regions containing up to 4 billion plastic microfibers per square kilometer. Human activities, including industrial practices and aquaculture, are major contributors to M/NPs pollution, which threatens 17% of marine species and incurs an economic loss of 6–9 billion USD. M/NPs are found across various marine habitats, including shorelines, sea floors, water columns, biota, and floating debris. Analyzing nanoplastics is particularly challenging due to their heterogeneous aggregation with other contaminants and their much lower concentrations than natural particles. Key drawbacks in addressing M/NPs pollution include inadequate funding, insufficient regulations, and a lack of policy frameworks on the prevalence, distribution, and sources of M/NPs. There is an increasing focus on utilizing innovative technologies such as artificial intelligence (AI) to monitor, assess risks, and predict the spread of M/NPs. Therefore, urgent global cooperation, involving all stakeholders and the general public, is essential. Additionally, integrating scientific and engineering methods, along with AI technologies, is crucial for monitoring and controlling M/NPs pollution and developing sustainable solutions.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"374 ","pages":"Article 144211"},"PeriodicalIF":8.1000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045653525001535","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Marine pollution by micro/nanoplastics (M/NPs) has emerged as a critical global issue, with widespread ecological and economic consequences. Numerous studies have investigated M/NPs pollution in marine environments, but there remains a need to assess progress, identify challenges, and propose future strategies. This review provides updated insights into marine M/NPs, including their sources, detection methods, global data from diverse marine ecosystems, and the challenges in mitigating pollution. The review reveals that the ocean harbors approximately 5.25 trillion plastic debris pieces, with a total of 50–75 trillion plastic and microplastic particles, with deep-sea regions containing up to 4 billion plastic microfibers per square kilometer. Human activities, including industrial practices and aquaculture, are major contributors to M/NPs pollution, which threatens 17% of marine species and incurs an economic loss of 6–9 billion USD. M/NPs are found across various marine habitats, including shorelines, sea floors, water columns, biota, and floating debris. Analyzing nanoplastics is particularly challenging due to their heterogeneous aggregation with other contaminants and their much lower concentrations than natural particles. Key drawbacks in addressing M/NPs pollution include inadequate funding, insufficient regulations, and a lack of policy frameworks on the prevalence, distribution, and sources of M/NPs. There is an increasing focus on utilizing innovative technologies such as artificial intelligence (AI) to monitor, assess risks, and predict the spread of M/NPs. Therefore, urgent global cooperation, involving all stakeholders and the general public, is essential. Additionally, integrating scientific and engineering methods, along with AI technologies, is crucial for monitoring and controlling M/NPs pollution and developing sustainable solutions.
期刊介绍:
Chemosphere, being an international multidisciplinary journal, is dedicated to publishing original communications and review articles on chemicals in the environment. The scope covers a wide range of topics, including the identification, quantification, behavior, fate, toxicology, treatment, and remediation of chemicals in the bio-, hydro-, litho-, and atmosphere, ensuring the broad dissemination of research in this field.