Process analyses on sorption-enhanced electrified steam methane reforming for near-zero emission hydrogen production with CO2 capture by calcium looping thermochemical reaction

IF 10.1 1区 工程技术 Q1 ENERGY & FUELS
Huchao Song, Xinyue Zhang, Xiaolong Lin, Hao Bian, Yinhe Liu
{"title":"Process analyses on sorption-enhanced electrified steam methane reforming for near-zero emission hydrogen production with CO2 capture by calcium looping thermochemical reaction","authors":"Huchao Song,&nbsp;Xinyue Zhang,&nbsp;Xiaolong Lin,&nbsp;Hao Bian,&nbsp;Yinhe Liu","doi":"10.1016/j.apenergy.2025.125537","DOIUrl":null,"url":null,"abstract":"<div><div>The predominant hydrogen production method is steam methane reforming, which generates substantial CO<sub>2</sub> emissions from both the reforming reaction and the combustion required to drive the process. Sorption-enhanced steam methane reforming (SESMR) enables the in-situ CO<sub>2</sub> removal during the reforming reaction, enhancing hydrogen yield. Replacing combustion with renewable electricity for reforming reaction can eliminate combustion-related emissions and flue gas heat loss. However, the intrinsic randomness, intermittency, and instability of renewable electricity present significant challenges to maintaining continuous and stable operation. This study introduces a process that innovatively leverages the mass and energy flow matching characteristics of the calcium looping with renewable electricity driving calcination, thermochemical energy storage, and sorption-enhanced steam methane reforming, thereby establishing the sorption-enhanced electrified steam methane reforming (SEESMR) process. The SEESMR exploits the dual functions of sorbent as both an energy carrier and a CO<sub>2</sub> carrier. Renewable electricity facilitates calcination in the regenerator, storing energy in the form of chemical energy and sensible heat. This stored energy is subsequently utilized in the reformer during CO<sub>2</sub> adsorption, providing the requisite energy to drive methane reforming and produce hydrogen. First and second law analyses indicate that SEESMR demonstrates a 7.90 percentage point improvement in thermal efficiency compared to SESMR through the substitution of combustion heating with electric heating and a high-efficiency heat recovery. Additionally, this modification reduces exergy losses by up to 53.2 % through elimination of combustion in SESMR. Furthermore, SEESMR enables continuous hydrogen production from renewable electricity, achieves a 35 % cost reduction within the current fuel pricing framework in China compared to direct electric heating methane reforming. This study may provide a stable, efficient and economical approach to zero carbon hydrogen production and large-scale renewable energy accommodation.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"385 ","pages":"Article 125537"},"PeriodicalIF":10.1000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261925002673","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The predominant hydrogen production method is steam methane reforming, which generates substantial CO2 emissions from both the reforming reaction and the combustion required to drive the process. Sorption-enhanced steam methane reforming (SESMR) enables the in-situ CO2 removal during the reforming reaction, enhancing hydrogen yield. Replacing combustion with renewable electricity for reforming reaction can eliminate combustion-related emissions and flue gas heat loss. However, the intrinsic randomness, intermittency, and instability of renewable electricity present significant challenges to maintaining continuous and stable operation. This study introduces a process that innovatively leverages the mass and energy flow matching characteristics of the calcium looping with renewable electricity driving calcination, thermochemical energy storage, and sorption-enhanced steam methane reforming, thereby establishing the sorption-enhanced electrified steam methane reforming (SEESMR) process. The SEESMR exploits the dual functions of sorbent as both an energy carrier and a CO2 carrier. Renewable electricity facilitates calcination in the regenerator, storing energy in the form of chemical energy and sensible heat. This stored energy is subsequently utilized in the reformer during CO2 adsorption, providing the requisite energy to drive methane reforming and produce hydrogen. First and second law analyses indicate that SEESMR demonstrates a 7.90 percentage point improvement in thermal efficiency compared to SESMR through the substitution of combustion heating with electric heating and a high-efficiency heat recovery. Additionally, this modification reduces exergy losses by up to 53.2 % through elimination of combustion in SESMR. Furthermore, SEESMR enables continuous hydrogen production from renewable electricity, achieves a 35 % cost reduction within the current fuel pricing framework in China compared to direct electric heating methane reforming. This study may provide a stable, efficient and economical approach to zero carbon hydrogen production and large-scale renewable energy accommodation.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Energy
Applied Energy 工程技术-工程:化工
CiteScore
21.20
自引率
10.70%
发文量
1830
审稿时长
41 days
期刊介绍: Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信