A novel frequency-domain physics-informed neural network for accurate prediction of 3D Spatio-temporal wind fields in wind turbine applications

IF 10.1 1区 工程技术 Q1 ENERGY & FUELS
Shaopeng Li , Xin Li , Yan Jiang , Qingshan Yang , Min Lin , Liuliu Peng , Jianhan Yu
{"title":"A novel frequency-domain physics-informed neural network for accurate prediction of 3D Spatio-temporal wind fields in wind turbine applications","authors":"Shaopeng Li ,&nbsp;Xin Li ,&nbsp;Yan Jiang ,&nbsp;Qingshan Yang ,&nbsp;Min Lin ,&nbsp;Liuliu Peng ,&nbsp;Jianhan Yu","doi":"10.1016/j.apenergy.2025.125526","DOIUrl":null,"url":null,"abstract":"<div><div>Wind power is a pivotal clean energy source worldwide. The structural safety and dynamic response analysis of wind turbines is significantly impacted by the availability and precision of wind speed data at their location. However, the sparse distribution of meteorological stations often makes it difficult to obtain high-resolution spatial wind speed data. This necessitates the application of conditional simulation to supplement low-resolution observational data. This study addresses this challenge by developing a frequency-domain physics-informed neural network (FD-PINN) designed to predict three-dimensional (3D) spatio-temporal wind fields for wind turbines by leveraging frequency-domain information. This approach involves constructing a deep neural network and integrating it with key physical models, including wind spectra, wind field coherence functions, and wind profiles. This integration allows the network to accurately predict wind conditions in environments with sparse wind field samples. The efficacy of our proposed methodology is assessed by comparing its predictive performance against traditional neural network approaches and actual observation data. Our findings demonstrate that integrating frequency-domain information significantly enhances the accuracy of spatial wind speed distribution predictions for wind turbines, compared to conventional methods. Additionally, this approach reduces spatial dependency issues with wind speed. Validation against real-world wind fields further confirms the feasibility and precision of this FD-PINN model in predicting 3D spatio-temporal wind fields.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"386 ","pages":"Article 125526"},"PeriodicalIF":10.1000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261925002569","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Wind power is a pivotal clean energy source worldwide. The structural safety and dynamic response analysis of wind turbines is significantly impacted by the availability and precision of wind speed data at their location. However, the sparse distribution of meteorological stations often makes it difficult to obtain high-resolution spatial wind speed data. This necessitates the application of conditional simulation to supplement low-resolution observational data. This study addresses this challenge by developing a frequency-domain physics-informed neural network (FD-PINN) designed to predict three-dimensional (3D) spatio-temporal wind fields for wind turbines by leveraging frequency-domain information. This approach involves constructing a deep neural network and integrating it with key physical models, including wind spectra, wind field coherence functions, and wind profiles. This integration allows the network to accurately predict wind conditions in environments with sparse wind field samples. The efficacy of our proposed methodology is assessed by comparing its predictive performance against traditional neural network approaches and actual observation data. Our findings demonstrate that integrating frequency-domain information significantly enhances the accuracy of spatial wind speed distribution predictions for wind turbines, compared to conventional methods. Additionally, this approach reduces spatial dependency issues with wind speed. Validation against real-world wind fields further confirms the feasibility and precision of this FD-PINN model in predicting 3D spatio-temporal wind fields.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Energy
Applied Energy 工程技术-工程:化工
CiteScore
21.20
自引率
10.70%
发文量
1830
审稿时长
41 days
期刊介绍: Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信