Drag and interfacial vorticity of spherical bubble contaminated with soluble surfactant

IF 3.6 2区 工程技术 Q1 MECHANICS
Kosuke Hayashi , Yuya Motoki , Dominique Legendre , Akio Tomiyama
{"title":"Drag and interfacial vorticity of spherical bubble contaminated with soluble surfactant","authors":"Kosuke Hayashi ,&nbsp;Yuya Motoki ,&nbsp;Dominique Legendre ,&nbsp;Akio Tomiyama","doi":"10.1016/j.ijmultiphaseflow.2025.105173","DOIUrl":null,"url":null,"abstract":"<div><div>Numerical simulations of spherical bubbles contaminated with soluble surfactant were carried out to investigate the surfactant effects on the drag coefficient, <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>D</mi></mrow></msub></math></span>, and the interfacial vorticity, <span><math><mi>ω</mi></math></span>, produced at the bubble interface. The different surface contamination regimes are considered in both the diffusion-dominant case and advection-dominant case, for different ambient contamination conditions controlled by varying the Marangoni, Langmuir and Hatta numbers, <span><math><mrow><mi>M</mi><mi>a</mi></mrow></math></span>, <span><math><mrow><mi>L</mi><mi>a</mi></mrow></math></span> and <span><math><mrow><mi>H</mi><mi>a</mi></mrow></math></span>. The combinations, <span><math><mrow><msub><mrow><mi>Π</mi></mrow><mrow><mi>M</mi></mrow></msub><mo>=</mo><mi>L</mi><mi>a</mi><mi>M</mi><mi>a</mi></mrow></math></span> and <span><math><mrow><msub><mrow><mi>Π</mi></mrow><mrow><mi>H</mi></mrow></msub><mo>=</mo><mi>H</mi><mi>a</mi><mo>/</mo><mi>L</mi><mi>a</mi></mrow></math></span>, of the dimensionless groups were found to play dominant roles in the surfactant effects on <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>D</mi></mrow></msub></math></span> and <span><math><mi>ω</mi></math></span> in both cases. Four different regimes for the dependence of the drag force and vorticity distribution as a function of the above dimensionless group were identified. In the diffusion-dominant case the vorticity is well correlated with a weighting average for those of clean and fully-contaminated bubbles, and a linear relation between <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>D</mi></mrow></msub></math></span> and the maximum vorticity holds as in the case with clean bubbles. The characteristics of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>D</mi></mrow></msub></math></span> in the advection-dominant case are more complicated, but they have been classified into four regimes in terms of <span><math><msub><mrow><mi>Π</mi></mrow><mrow><mi>M</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>Π</mi></mrow><mrow><mi>H</mi></mrow></msub></math></span>. A simple correlation of the stagnant-cap angle expressed in terms of <span><math><msub><mrow><mi>Π</mi></mrow><mrow><mi>M</mi></mrow></msub></math></span> was also obtained. This study thus revealed the surfactant effects on <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>D</mi></mrow></msub></math></span> and <span><math><mi>ω</mi></math></span> and the drag-vorticity relations in detail at the first time for the different regimes of surface contamination.</div></div>","PeriodicalId":339,"journal":{"name":"International Journal of Multiphase Flow","volume":"187 ","pages":"Article 105173"},"PeriodicalIF":3.6000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Multiphase Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301932225000515","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Numerical simulations of spherical bubbles contaminated with soluble surfactant were carried out to investigate the surfactant effects on the drag coefficient, CD, and the interfacial vorticity, ω, produced at the bubble interface. The different surface contamination regimes are considered in both the diffusion-dominant case and advection-dominant case, for different ambient contamination conditions controlled by varying the Marangoni, Langmuir and Hatta numbers, Ma, La and Ha. The combinations, ΠM=LaMa and ΠH=Ha/La, of the dimensionless groups were found to play dominant roles in the surfactant effects on CD and ω in both cases. Four different regimes for the dependence of the drag force and vorticity distribution as a function of the above dimensionless group were identified. In the diffusion-dominant case the vorticity is well correlated with a weighting average for those of clean and fully-contaminated bubbles, and a linear relation between CD and the maximum vorticity holds as in the case with clean bubbles. The characteristics of CD in the advection-dominant case are more complicated, but they have been classified into four regimes in terms of ΠM and ΠH. A simple correlation of the stagnant-cap angle expressed in terms of ΠM was also obtained. This study thus revealed the surfactant effects on CD and ω and the drag-vorticity relations in detail at the first time for the different regimes of surface contamination.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.30
自引率
10.50%
发文量
244
审稿时长
4 months
期刊介绍: The International Journal of Multiphase Flow publishes analytical, numerical and experimental articles of lasting interest. The scope of the journal includes all aspects of mass, momentum and energy exchange phenomena among different phases such as occur in disperse flows, gas–liquid and liquid–liquid flows, flows in porous media, boiling, granular flows and others. The journal publishes full papers, brief communications and conference announcements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信