Thermodynamic and environment analysis of a modified transcritical CO2 refrigeration cycle integrated with ejector and subcooler

IF 3.5 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Lingeng Zou , Ye Liu , Jianlin Yu
{"title":"Thermodynamic and environment analysis of a modified transcritical CO2 refrigeration cycle integrated with ejector and subcooler","authors":"Lingeng Zou ,&nbsp;Ye Liu ,&nbsp;Jianlin Yu","doi":"10.1016/j.ijrefrig.2025.02.012","DOIUrl":null,"url":null,"abstract":"<div><div>The traditional transcritical CO<sub>2</sub> two-stage compression refrigeration cycle (TTRC) has a great advantage in supermarket refrigeration applications. Currently, however, the performance of the TTRC still has the potential to be improved. In this paper, an ejector-enhanced transcritical two-stage compression CO<sub>2</sub> cycle is presented for supermarket refrigeration application. Based on the basic TTRC with a subcooler, a flash tank, an ejector and are introduced. On the one hand, part of the expansion work can be recovered by the ejector. Moreover, the subcooler is employed to increase the subcooling degree of refrigerant entering the expansion valve, which could increase the evaporator's cooling capacity. The cycle performances of the cycles are theoretically studied by energy, exergy and carbon footprint evaluation. Meanwhile, the intermediate pressures of the two cycles are also optimized. Under optimum intermediate pressure, the energy analyses show that the coefficient of performance is improved by 9.6–11.0% and the volume cooling capacity is enhanced by 14.5%-18.4% with the modified cycle. Moreover, the exergy analysis indicates that the expansion valves account for 27.1% of the exergy destruction of the basic cycle, while it is just 7.51% for the modified cycle. The carbon footprint analysis shows that the modified system with CO<sub>2</sub> refrigerant could reduce carbon emissions by 17.95% compared to the conventional refrigerant R404A. It shows the feasibility of using CO<sub>2</sub> to replace R404A refrigerant in commercial supermarket refrigeration, and has significant eco-friendly benefits.</div></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":"173 ","pages":"Pages 123-138"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refrigeration-revue Internationale Du Froid","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S014070072500060X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The traditional transcritical CO2 two-stage compression refrigeration cycle (TTRC) has a great advantage in supermarket refrigeration applications. Currently, however, the performance of the TTRC still has the potential to be improved. In this paper, an ejector-enhanced transcritical two-stage compression CO2 cycle is presented for supermarket refrigeration application. Based on the basic TTRC with a subcooler, a flash tank, an ejector and are introduced. On the one hand, part of the expansion work can be recovered by the ejector. Moreover, the subcooler is employed to increase the subcooling degree of refrigerant entering the expansion valve, which could increase the evaporator's cooling capacity. The cycle performances of the cycles are theoretically studied by energy, exergy and carbon footprint evaluation. Meanwhile, the intermediate pressures of the two cycles are also optimized. Under optimum intermediate pressure, the energy analyses show that the coefficient of performance is improved by 9.6–11.0% and the volume cooling capacity is enhanced by 14.5%-18.4% with the modified cycle. Moreover, the exergy analysis indicates that the expansion valves account for 27.1% of the exergy destruction of the basic cycle, while it is just 7.51% for the modified cycle. The carbon footprint analysis shows that the modified system with CO2 refrigerant could reduce carbon emissions by 17.95% compared to the conventional refrigerant R404A. It shows the feasibility of using CO2 to replace R404A refrigerant in commercial supermarket refrigeration, and has significant eco-friendly benefits.
带喷射器和过冷器的改进跨临界CO2制冷循环的热力学和环境分析
传统的跨临界CO2两级压缩制冷循环(TTRC)在超市制冷应用中具有很大的优势。但目前,储税券的表现仍有改善的空间。本文提出了一种用于超市制冷的喷射器增强型跨临界两级压缩CO2循环。在基本的TTRC的基础上,介绍了过冷器、闪蒸箱、喷射器等。一方面,部分膨胀功可以通过引射器回收。此外,采用过冷器可以提高进入膨胀阀的制冷剂的过冷度,从而提高蒸发器的制冷量。从能量评价、用能评价和碳足迹评价三个方面对循环的循环性能进行了理论研究。同时,对两个循环的中间压力也进行了优化。在最优中间压力下,能量分析表明,改进循环可使性能系数提高9.6 ~ 11.0%,体积制冷量提高14.5% ~ 18.4%。经火用分析可知,膨胀阀占基本循环火用破坏的27.1%,而修正循环的火用破坏仅为7.51%。碳足迹分析表明,与常规制冷剂R404A相比,采用CO2制冷剂的改造系统可减少17.95%的碳排放。说明了在商业超市制冷中使用CO2替代R404A制冷剂的可行性,并且具有显著的环保效益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.30
自引率
12.80%
发文量
363
审稿时长
3.7 months
期刊介绍: The International Journal of Refrigeration is published for the International Institute of Refrigeration (IIR) by Elsevier. It is essential reading for all those wishing to keep abreast of research and industrial news in refrigeration, air conditioning and associated fields. This is particularly important in these times of rapid introduction of alternative refrigerants and the emergence of new technology. The journal has published special issues on alternative refrigerants and novel topics in the field of boiling, condensation, heat pumps, food refrigeration, carbon dioxide, ammonia, hydrocarbons, magnetic refrigeration at room temperature, sorptive cooling, phase change materials and slurries, ejector technology, compressors, and solar cooling. As well as original research papers the International Journal of Refrigeration also includes review articles, papers presented at IIR conferences, short reports and letters describing preliminary results and experimental details, and letters to the Editor on recent areas of discussion and controversy. Other features include forthcoming events, conference reports and book reviews. Papers are published in either English or French with the IIR news section in both languages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信