Innovative QSRR modeling approach for the development of an ultra-sensitive LC-MS/MS method for trace analysis of N-nitrosamines

Yue Zhang, Sabah Houari, Thomas Van Laethem, Amandine Dispas, Eric Ziemons, Philippe Hubert, Cédric Hubert
{"title":"Innovative QSRR modeling approach for the development of an ultra-sensitive LC-MS/MS method for trace analysis of N-nitrosamines","authors":"Yue Zhang,&nbsp;Sabah Houari,&nbsp;Thomas Van Laethem,&nbsp;Amandine Dispas,&nbsp;Eric Ziemons,&nbsp;Philippe Hubert,&nbsp;Cédric Hubert","doi":"10.1016/j.jpbao.2025.100064","DOIUrl":null,"url":null,"abstract":"<div><div>To address regulatory concerns regarding N-nitrosamine contamination in pharmaceutical products, generic LC-MS/MS methods for determining N-nitrosamines were developed using an innovative <em>in silico</em> approach based on Quantitative Structure Retention Relationship modeling (QSRR). The development process included screening and optimization phases, offering flexibility in targeting N-nitrosamines and addressing the challenges related to the matrix effect. This methodology represents a significant advancement in method development. Among the developed methods, a highly sensitive and accurate LC-MS/MS method was successfully validated to simultaneously determine 5 small-molecule N-nitrosamine impurities in tablets, which was used in the present proof-of-concept study. The validation followed the ICH Q2 (R2) guidelines, employing a combined approach for accuracy and precision based on total error risk-based methodology. The method was validated to function as both an impurity limit test and a quantitative method. Validation results demonstrated adequate quantitative performance of the method, establishing a validated dosing range from 1 to 30 ng/mL for all N-nitrosamines. The estimated detection limit ranged from 0.75 pg/mL to 0.02 ng/mL. The detection and quantification limits for each N-nitrosamine met the EMA N-nitrosamine investigation approach requirements. Moreover, both are always below 10 % of their respective acceptable limit in the studied finished product formulation. This proposed method is suitable for investigating small-molecule N-nitrosamines in pharmaceutical products and also provides a starting point for further method development, particularly for the determination of newly identified small-molecule N-nitrosamines and drug-substance-related N-nitrosamines.</div></div>","PeriodicalId":100822,"journal":{"name":"Journal of Pharmaceutical and Biomedical Analysis Open","volume":"5 ","pages":"Article 100064"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmaceutical and Biomedical Analysis Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949771X25000155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To address regulatory concerns regarding N-nitrosamine contamination in pharmaceutical products, generic LC-MS/MS methods for determining N-nitrosamines were developed using an innovative in silico approach based on Quantitative Structure Retention Relationship modeling (QSRR). The development process included screening and optimization phases, offering flexibility in targeting N-nitrosamines and addressing the challenges related to the matrix effect. This methodology represents a significant advancement in method development. Among the developed methods, a highly sensitive and accurate LC-MS/MS method was successfully validated to simultaneously determine 5 small-molecule N-nitrosamine impurities in tablets, which was used in the present proof-of-concept study. The validation followed the ICH Q2 (R2) guidelines, employing a combined approach for accuracy and precision based on total error risk-based methodology. The method was validated to function as both an impurity limit test and a quantitative method. Validation results demonstrated adequate quantitative performance of the method, establishing a validated dosing range from 1 to 30 ng/mL for all N-nitrosamines. The estimated detection limit ranged from 0.75 pg/mL to 0.02 ng/mL. The detection and quantification limits for each N-nitrosamine met the EMA N-nitrosamine investigation approach requirements. Moreover, both are always below 10 % of their respective acceptable limit in the studied finished product formulation. This proposed method is suitable for investigating small-molecule N-nitrosamines in pharmaceutical products and also provides a starting point for further method development, particularly for the determination of newly identified small-molecule N-nitrosamines and drug-substance-related N-nitrosamines.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信