Kexin Shao , Yadong Wang , Peng Chen , Fenghuan Wang
{"title":"Synthesis of (R)-acetoin by targeted immobilization of acetolactate synthase and acetolactate decarboxylase via the spy/snoop system","authors":"Kexin Shao , Yadong Wang , Peng Chen , Fenghuan Wang","doi":"10.1016/j.bej.2025.109671","DOIUrl":null,"url":null,"abstract":"<div><div>Acetoin (3-hydroxy-2-butanone) is an important four-carbon platform compound and an intermediate for several high-value-added pharmaceutical compounds. In this study, Catcher-Tag tagged proteins were used for targeted immobilization of acetolactate synthase (ALS) and acetolactate decarboxylase (ALDC) for catalyzing the synthesis of Acetoin from sodium pyruvate in vitro. The study discussed the enzymatic properties of the immobilized enzyme LX@ALS-SpyTag 和 LX@ALDC-SnoopTag, as well as the optimal catalytic conditions and reusability of the immobilized dual enzyme in vitro catalytic system. The immobilized enzyme exhibited higher relative activity across a broader range of temperature and pH intervals than the free enzyme. The in vitro catalytic synthesis of (R)-acetoin from sodium pyruvate using an immobilized dual enzyme system resulted in 99.95 % of the theoretical conversion of (R)-acetoin at 45°C, pH 7.0, and 0.2 M substrate concentration. In addition, the immobilized dual enzyme system had better operational stability than the free enzyme, retaining 69.20 % of the initial total catalytic activity after 5 cycles. In conclusion, this study demonstrated a promising and convenient Catcher-Tag tagged protein immobilization strategy that enables rapid targeted immobilization of tagged proteins directly from crude enzyme solution, providing a novel approach for the construction of in vitro immobilized multi-enzyme complexes.</div></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":"217 ","pages":"Article 109671"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369703X25000440","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Acetoin (3-hydroxy-2-butanone) is an important four-carbon platform compound and an intermediate for several high-value-added pharmaceutical compounds. In this study, Catcher-Tag tagged proteins were used for targeted immobilization of acetolactate synthase (ALS) and acetolactate decarboxylase (ALDC) for catalyzing the synthesis of Acetoin from sodium pyruvate in vitro. The study discussed the enzymatic properties of the immobilized enzyme LX@ALS-SpyTag 和 LX@ALDC-SnoopTag, as well as the optimal catalytic conditions and reusability of the immobilized dual enzyme in vitro catalytic system. The immobilized enzyme exhibited higher relative activity across a broader range of temperature and pH intervals than the free enzyme. The in vitro catalytic synthesis of (R)-acetoin from sodium pyruvate using an immobilized dual enzyme system resulted in 99.95 % of the theoretical conversion of (R)-acetoin at 45°C, pH 7.0, and 0.2 M substrate concentration. In addition, the immobilized dual enzyme system had better operational stability than the free enzyme, retaining 69.20 % of the initial total catalytic activity after 5 cycles. In conclusion, this study demonstrated a promising and convenient Catcher-Tag tagged protein immobilization strategy that enables rapid targeted immobilization of tagged proteins directly from crude enzyme solution, providing a novel approach for the construction of in vitro immobilized multi-enzyme complexes.
期刊介绍:
The Biochemical Engineering Journal aims to promote progress in the crucial chemical engineering aspects of the development of biological processes associated with everything from raw materials preparation to product recovery relevant to industries as diverse as medical/healthcare, industrial biotechnology, and environmental biotechnology.
The Journal welcomes full length original research papers, short communications, and review papers* in the following research fields:
Biocatalysis (enzyme or microbial) and biotransformations, including immobilized biocatalyst preparation and kinetics
Biosensors and Biodevices including biofabrication and novel fuel cell development
Bioseparations including scale-up and protein refolding/renaturation
Environmental Bioengineering including bioconversion, bioremediation, and microbial fuel cells
Bioreactor Systems including characterization, optimization and scale-up
Bioresources and Biorefinery Engineering including biomass conversion, biofuels, bioenergy, and optimization
Industrial Biotechnology including specialty chemicals, platform chemicals and neutraceuticals
Biomaterials and Tissue Engineering including bioartificial organs, cell encapsulation, and controlled release
Cell Culture Engineering (plant, animal or insect cells) including viral vectors, monoclonal antibodies, recombinant proteins, vaccines, and secondary metabolites
Cell Therapies and Stem Cells including pluripotent, mesenchymal and hematopoietic stem cells; immunotherapies; tissue-specific differentiation; and cryopreservation
Metabolic Engineering, Systems and Synthetic Biology including OMICS, bioinformatics, in silico biology, and metabolic flux analysis
Protein Engineering including enzyme engineering and directed evolution.