{"title":"A rate-dependent peridynamic–SPH coupling model for damage and failure analysis of concrete dam structures subjected to underwater explosions","authors":"Xieping Huang, Bin Zhu, Yunmin Chen","doi":"10.1016/j.ijimpeng.2025.105270","DOIUrl":null,"url":null,"abstract":"<div><div>This study introduces a coupled peridynamics (PD) and smoothed particle hydrodynamics (SPH) model to handle the complex physical processes in concrete dam structures subjected to near-field underwater explosions. A robust coupling algorithm is applied to ensure accurate data exchange between PD and SPH domains, enabling the simulation of fluid-structure interactions. To account for the material behavior under high strain rates, a rate-dependent concrete model is integrated into the PD–SPH framework. The developed PD–SPH model is validated through simulations of centrifugal model tests, with results benchmarked against experimental findings and finite element method (FEM) predictions. The simulation captures key damage features, including horizontal tensile cracking at the dam head and an oblique penetrating crack in the dam body, forming an angle of approximately 17° relative to the horizontal. Velocity and strain responses at critical monitoring points demonstrate strong agreement with FEM results, showcasing the model's capability in accurately predicting the structural responses and failure of concrete dams caused by underwater explosions. To the best of the authors’ knowledge, research applying a coupled PD–SPH model to concrete structures under blast loading is still rare, particularly when considering the entire physical process, from explosive detonation to structural failure, accounting for fluid-structure interactions.</div></div>","PeriodicalId":50318,"journal":{"name":"International Journal of Impact Engineering","volume":"200 ","pages":"Article 105270"},"PeriodicalIF":5.1000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Impact Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0734743X2500051X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study introduces a coupled peridynamics (PD) and smoothed particle hydrodynamics (SPH) model to handle the complex physical processes in concrete dam structures subjected to near-field underwater explosions. A robust coupling algorithm is applied to ensure accurate data exchange between PD and SPH domains, enabling the simulation of fluid-structure interactions. To account for the material behavior under high strain rates, a rate-dependent concrete model is integrated into the PD–SPH framework. The developed PD–SPH model is validated through simulations of centrifugal model tests, with results benchmarked against experimental findings and finite element method (FEM) predictions. The simulation captures key damage features, including horizontal tensile cracking at the dam head and an oblique penetrating crack in the dam body, forming an angle of approximately 17° relative to the horizontal. Velocity and strain responses at critical monitoring points demonstrate strong agreement with FEM results, showcasing the model's capability in accurately predicting the structural responses and failure of concrete dams caused by underwater explosions. To the best of the authors’ knowledge, research applying a coupled PD–SPH model to concrete structures under blast loading is still rare, particularly when considering the entire physical process, from explosive detonation to structural failure, accounting for fluid-structure interactions.
期刊介绍:
The International Journal of Impact Engineering, established in 1983 publishes original research findings related to the response of structures, components and materials subjected to impact, blast and high-rate loading. Areas relevant to the journal encompass the following general topics and those associated with them:
-Behaviour and failure of structures and materials under impact and blast loading
-Systems for protection and absorption of impact and blast loading
-Terminal ballistics
-Dynamic behaviour and failure of materials including plasticity and fracture
-Stress waves
-Structural crashworthiness
-High-rate mechanical and forming processes
-Impact, blast and high-rate loading/measurement techniques and their applications