Michelle Gwerder , Michèle Widmer , Olivia Schären , Navrag B Singh , Morgan Sangeux , Elke Viehweger
{"title":"Assessing dynamic stability in children with idiopathic toe walking during overground walking","authors":"Michelle Gwerder , Michèle Widmer , Olivia Schären , Navrag B Singh , Morgan Sangeux , Elke Viehweger","doi":"10.1016/j.clinbiomech.2025.106468","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Children with idiopathic toe walking present with reduced ankle mobility, impaired balance, and difficulties in motor control. There is a need to diagnose idiopathic toe walking in a holistic manner and improve the monitoring of interventions. The aim is to assess dynamic stability with measures of margin of stability and whole-body angular momentum and evaluate their clinical relevance.</div></div><div><h3>Methods</h3><div>A retrospective cross-sectional study with 35 idiopathic toe walkers (23 male, mean age (SD) 10.0 (2.9) years) and 20 typically developing controls (10 male, 11.4 (2.8) years). All participants had a clinical gait analysis at the local hospital. Dynamic stability was assessed with margin of stability, whole-body angular momentum, GaitSD, and spatiotemporal gait parameters. Student <em>t</em>-tests with adjustments for multiple comparisons were performed.</div></div><div><h3>Findings</h3><div>Margin of stability in anterior direction was significantly shorter (ES = 1.29) and whole-body angular momentum in the coronal plane was significantly larger (ES = 0.90) in idiopathic toe walkers compared to typically developing children. No other results were below the set threshold for significance.</div></div><div><h3>Interpretation</h3><div>Children with idiopathic toe walking continue to use an immature, falling forward movement strategy to maintain forward momentum. It is probable that those children adopted toe walking behavior to support increased energy absorption during the initial fall. Furthermore, the addition of dynamic stability measures not only provides insight into their ability to balance, these measures also allow an understanding of the plausible strategies adopted during walking and could potentially improve diagnosis and quantification of therapeutic outcomes.</div></div>","PeriodicalId":50992,"journal":{"name":"Clinical Biomechanics","volume":"123 ","pages":"Article 106468"},"PeriodicalIF":1.4000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Biomechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0268003325000403","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Children with idiopathic toe walking present with reduced ankle mobility, impaired balance, and difficulties in motor control. There is a need to diagnose idiopathic toe walking in a holistic manner and improve the monitoring of interventions. The aim is to assess dynamic stability with measures of margin of stability and whole-body angular momentum and evaluate their clinical relevance.
Methods
A retrospective cross-sectional study with 35 idiopathic toe walkers (23 male, mean age (SD) 10.0 (2.9) years) and 20 typically developing controls (10 male, 11.4 (2.8) years). All participants had a clinical gait analysis at the local hospital. Dynamic stability was assessed with margin of stability, whole-body angular momentum, GaitSD, and spatiotemporal gait parameters. Student t-tests with adjustments for multiple comparisons were performed.
Findings
Margin of stability in anterior direction was significantly shorter (ES = 1.29) and whole-body angular momentum in the coronal plane was significantly larger (ES = 0.90) in idiopathic toe walkers compared to typically developing children. No other results were below the set threshold for significance.
Interpretation
Children with idiopathic toe walking continue to use an immature, falling forward movement strategy to maintain forward momentum. It is probable that those children adopted toe walking behavior to support increased energy absorption during the initial fall. Furthermore, the addition of dynamic stability measures not only provides insight into their ability to balance, these measures also allow an understanding of the plausible strategies adopted during walking and could potentially improve diagnosis and quantification of therapeutic outcomes.
期刊介绍:
Clinical Biomechanics is an international multidisciplinary journal of biomechanics with a focus on medical and clinical applications of new knowledge in the field.
The science of biomechanics helps explain the causes of cell, tissue, organ and body system disorders, and supports clinicians in the diagnosis, prognosis and evaluation of treatment methods and technologies. Clinical Biomechanics aims to strengthen the links between laboratory and clinic by publishing cutting-edge biomechanics research which helps to explain the causes of injury and disease, and which provides evidence contributing to improved clinical management.
A rigorous peer review system is employed and every attempt is made to process and publish top-quality papers promptly.
Clinical Biomechanics explores all facets of body system, organ, tissue and cell biomechanics, with an emphasis on medical and clinical applications of the basic science aspects. The role of basic science is therefore recognized in a medical or clinical context. The readership of the journal closely reflects its multi-disciplinary contents, being a balance of scientists, engineers and clinicians.
The contents are in the form of research papers, brief reports, review papers and correspondence, whilst special interest issues and supplements are published from time to time.
Disciplines covered include biomechanics and mechanobiology at all scales, bioengineering and use of tissue engineering and biomaterials for clinical applications, biophysics, as well as biomechanical aspects of medical robotics, ergonomics, physical and occupational therapeutics and rehabilitation.