Minimum degree k and k-connectedness usually arrive together

IF 0.7 3区 数学 Q2 MATHEMATICS
Sahar Diskin , Anna Geisler
{"title":"Minimum degree k and k-connectedness usually arrive together","authors":"Sahar Diskin ,&nbsp;Anna Geisler","doi":"10.1016/j.disc.2025.114453","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>d</mi><mo>,</mo><mi>n</mi><mo>∈</mo><mi>N</mi></math></span> be such that <span><math><mi>d</mi><mo>=</mo><mi>ω</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span>, and <span><math><mi>d</mi><mo>≤</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>1</mn><mo>−</mo><mi>a</mi></mrow></msup></math></span> for some constant <span><math><mi>a</mi><mo>&gt;</mo><mn>0</mn></math></span>. Consider a <em>d</em>-regular graph <span><math><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></math></span> and the random graph process that starts with the empty graph <span><math><mi>G</mi><mo>(</mo><mn>0</mn><mo>)</mo></math></span> and at each step <span><math><mi>G</mi><mo>(</mo><mi>i</mi><mo>)</mo></math></span> is obtained from <span><math><mi>G</mi><mo>(</mo><mi>i</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span> by adding uniformly at random a new edge from <em>E</em>. We show that if <em>G</em> satisfies some (very) mild global edge-expansion, and an almost optimal edge-expansion of sets up to order <span><math><mi>O</mi><mo>(</mo><mi>d</mi><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span>, then for any constant <span><math><mi>k</mi><mo>∈</mo><mi>N</mi></math></span> in the random graph process on <em>G</em>, typically the hitting times of minimum degree at least <em>k</em> and of <em>k</em>-connectedness are equal. This, in particular, covers both <em>d</em>-regular high dimensional product graphs and pseudo-random graphs, and confirms a conjecture of Joos from 2015. We further demonstrate that this result is tight in the sense that there are <em>d</em>-regular <em>n</em>-vertex graphs with optimal edge-expansion of sets up to order <span><math><mi>Ω</mi><mo>(</mo><mi>d</mi><mo>)</mo></math></span>, for which the probability threshold of minimum degree at least one is different than the probability threshold of connectivity.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 6","pages":"Article 114453"},"PeriodicalIF":0.7000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25000615","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let d,nN be such that d=ω(1), and dn1a for some constant a>0. Consider a d-regular graph G=(V,E) and the random graph process that starts with the empty graph G(0) and at each step G(i) is obtained from G(i1) by adding uniformly at random a new edge from E. We show that if G satisfies some (very) mild global edge-expansion, and an almost optimal edge-expansion of sets up to order O(dlogn), then for any constant kN in the random graph process on G, typically the hitting times of minimum degree at least k and of k-connectedness are equal. This, in particular, covers both d-regular high dimensional product graphs and pseudo-random graphs, and confirms a conjecture of Joos from 2015. We further demonstrate that this result is tight in the sense that there are d-regular n-vertex graphs with optimal edge-expansion of sets up to order Ω(d), for which the probability threshold of minimum degree at least one is different than the probability threshold of connectivity.
最小k度和k连通度通常是同时到达的
设d,n∈n使d=ω(1),且对于某常数a>;0, d≤n1 - a。考虑d-regular图G = (V, E)和随机图过程,从空图G(0)和每一步G(我)是获得G(我−1)通过添加均匀随机一个新的边缘从大肠我们表明,如果G满足一些(非常)全球edge-expansion温和,和一个几乎最优edge-expansion设置命令O(网络日志本⁡n),然后随机图过程中任意常数k∈n G,通常最低程度的撞击时间至少k和k-connectedness是相等的。特别是,这涵盖了d规则高维积图和伪随机图,并证实了Joos在2015年的一个猜想。我们进一步证明了这个结果是紧密的,因为存在d个正则n顶点图,其最优边展开设置为Ω(d)阶,其最小度至少为1的概率阈值不同于连通性的概率阈值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信