{"title":"Synchronous enhancement of extreme-damping and stiffness in elastic mechanical metamaterials via self-tensioning friction mechanism","authors":"Yun-Long Chen, Li Ma","doi":"10.1016/j.ijsolstr.2025.113282","DOIUrl":null,"url":null,"abstract":"<div><div>Reusable mechanical metamaterials with both high energy-dissipating and load-bearing features are ideal candidates for widespread dynamic applications, ranging from impact mitigation to vibration suppression. Despite great demands, the existing designs either exhibit limited damping or stiffness, and perhaps work well only for one-time use. To reconcile these contradictions, a synchronous enhancements strategy of damping and stiffness is proposed to create novel mechanical metamaterial by replacing the viscous damping in the viscoelastic material Kelvin-Voigt constitutive to frictional damping, exemplified by auxetic self-tensioning friction damping metamaterials (FDM). They trigger an embedded sliding friction behavior through auxetic effect to achieve energy dissipation, which especially shows high stiffness while achieving extreme damping ability synergistically under large compressive strain. This synchronous enhancement mechanism is analysed by combining finite element modelling, theoretical analysis, and experimental validation. These innovative mechanical metamaterials with repeatability and self-recoverability have broad applications in engineering materials-structures-systems for energy-dissipation and load-carrying.</div></div>","PeriodicalId":14311,"journal":{"name":"International Journal of Solids and Structures","volume":"313 ","pages":"Article 113282"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Solids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002076832500068X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Reusable mechanical metamaterials with both high energy-dissipating and load-bearing features are ideal candidates for widespread dynamic applications, ranging from impact mitigation to vibration suppression. Despite great demands, the existing designs either exhibit limited damping or stiffness, and perhaps work well only for one-time use. To reconcile these contradictions, a synchronous enhancements strategy of damping and stiffness is proposed to create novel mechanical metamaterial by replacing the viscous damping in the viscoelastic material Kelvin-Voigt constitutive to frictional damping, exemplified by auxetic self-tensioning friction damping metamaterials (FDM). They trigger an embedded sliding friction behavior through auxetic effect to achieve energy dissipation, which especially shows high stiffness while achieving extreme damping ability synergistically under large compressive strain. This synchronous enhancement mechanism is analysed by combining finite element modelling, theoretical analysis, and experimental validation. These innovative mechanical metamaterials with repeatability and self-recoverability have broad applications in engineering materials-structures-systems for energy-dissipation and load-carrying.
期刊介绍:
The International Journal of Solids and Structures has as its objective the publication and dissemination of original research in Mechanics of Solids and Structures as a field of Applied Science and Engineering. It fosters thus the exchange of ideas among workers in different parts of the world and also among workers who emphasize different aspects of the foundations and applications of the field.
Standing as it does at the cross-roads of Materials Science, Life Sciences, Mathematics, Physics and Engineering Design, the Mechanics of Solids and Structures is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from the more classical problems of structural analysis to mechanics of solids continually interacting with other media and including fracture, flow, wave propagation, heat transfer, thermal effects in solids, optimum design methods, model analysis, structural topology and numerical techniques. Interest extends to both inorganic and organic solids and structures.