Global existence versus blow-up for a Hardy-Hénon parabolic equation on arbitrary domains

IF 2.4 2区 数学 Q1 MATHEMATICS
Ricardo Castillo , Ricardo Freire , Miguel Loayza
{"title":"Global existence versus blow-up for a Hardy-Hénon parabolic equation on arbitrary domains","authors":"Ricardo Castillo ,&nbsp;Ricardo Freire ,&nbsp;Miguel Loayza","doi":"10.1016/j.jde.2025.02.047","DOIUrl":null,"url":null,"abstract":"<div><div>We are concentrating on the nonlinear parabolic problem described by the equation <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>=</mo><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>|</mo><mo>⋅</mo><msup><mrow><mo>|</mo></mrow><mrow><mi>γ</mi></mrow></msup><msup><mrow><mi>u</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> in <span><math><mi>Ω</mi><mo>×</mo><mo>(</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>)</mo></math></span> subject to zero Dirichlet conditions on the boundary ∂Ω, where Ω is a general domain that may be either bounded or unbounded. Here, <span><math><mi>h</mi><mo>∈</mo><mi>C</mi><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>, <span><math><mi>γ</mi><mo>&gt;</mo><mo>−</mo><mn>2</mn></math></span>, <span><math><mi>p</mi><mo>&gt;</mo><mn>1</mn></math></span>, and we consider only nonnegative initial data. We have derived new conditions for global existence and blow up in finite time in terms of the behavior of the heat semigroup. Our results are particularly relevant when <span><math><mi>γ</mi><mo>=</mo><mn>0</mn></math></span>, as they align with Meier's findings in Meier (1990) <span><span>[29]</span></span>. When <span><math><mi>γ</mi><mo>≠</mo><mn>0</mn></math></span>, our results provide new Fujita exponents.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"429 ","pages":"Pages 427-459"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625001676","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We are concentrating on the nonlinear parabolic problem described by the equation utΔu=h(t)||γup in Ω×(0,T) subject to zero Dirichlet conditions on the boundary ∂Ω, where Ω is a general domain that may be either bounded or unbounded. Here, hC(0,), γ>2, p>1, and we consider only nonnegative initial data. We have derived new conditions for global existence and blow up in finite time in terms of the behavior of the heat semigroup. Our results are particularly relevant when γ=0, as they align with Meier's findings in Meier (1990) [29]. When γ0, our results provide new Fujita exponents.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信