A review article on the photocatalytic degradation of atrazine by potential catalysts

Fawad Ahmad , Sabeen Tahir , Ayesha Wali , Muhammad Imran Khan , Abdallah Shanableh
{"title":"A review article on the photocatalytic degradation of atrazine by potential catalysts","authors":"Fawad Ahmad ,&nbsp;Sabeen Tahir ,&nbsp;Ayesha Wali ,&nbsp;Muhammad Imran Khan ,&nbsp;Abdallah Shanableh","doi":"10.1016/j.nxmate.2025.100534","DOIUrl":null,"url":null,"abstract":"<div><div>Atrazine, a persistent herbicide with endocrine-disrupting properties, poses significant environmental and health risks. Its widespread use and persistence in aquatic ecosystems necessitate effective remediation strategies. Photocatalytic degradation, a promising green technology, utilizes light energy to degrade pollutants into less harmful substances. This study systematically investigates the photocatalytic degradation of atrazine using a variety of photocatalysts, including TiO<sub>2</sub>, boron-doped TiO<sub>2</sub>, ZnIn<sub>2</sub>S4-based catalysts, indole-3-acetic acid-montmorillonite clay composites, ZnO-based catalysts, ZnO/GO composites, Pd/ZnWO4 nanocomposites, and zinc-doped cadmium aluminum ferrite. Boron-doped TiO<sub>2</sub> achieved a degradation efficiency of 94.7 % within 180 min under visible light. The influence of key parameters such as catalyst concentration, pH, initial atrazine concentration, and light intensity on the degradation process was systematically examined. A novel aspect of this research lies in the comparative analysis of diverse photocatalysts, enabling the identification of optimal conditions for efficient atrazine removal. High-performance liquid chromatography (HPLC) and total organic carbon (TOC) analyses confirmed both primary degradation and mineralization of atrazine. The findings of this study offer valuable insights into the potential application of photocatalytic technology for the remediation of atrazine-contaminated water bodies. By optimizing reaction conditions and selecting suitable photocatalysts it is possible to achieve effective and sustainable removal of this persistent pollutant.</div></div>","PeriodicalId":100958,"journal":{"name":"Next Materials","volume":"8 ","pages":"Article 100534"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949822825000528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Atrazine, a persistent herbicide with endocrine-disrupting properties, poses significant environmental and health risks. Its widespread use and persistence in aquatic ecosystems necessitate effective remediation strategies. Photocatalytic degradation, a promising green technology, utilizes light energy to degrade pollutants into less harmful substances. This study systematically investigates the photocatalytic degradation of atrazine using a variety of photocatalysts, including TiO2, boron-doped TiO2, ZnIn2S4-based catalysts, indole-3-acetic acid-montmorillonite clay composites, ZnO-based catalysts, ZnO/GO composites, Pd/ZnWO4 nanocomposites, and zinc-doped cadmium aluminum ferrite. Boron-doped TiO2 achieved a degradation efficiency of 94.7 % within 180 min under visible light. The influence of key parameters such as catalyst concentration, pH, initial atrazine concentration, and light intensity on the degradation process was systematically examined. A novel aspect of this research lies in the comparative analysis of diverse photocatalysts, enabling the identification of optimal conditions for efficient atrazine removal. High-performance liquid chromatography (HPLC) and total organic carbon (TOC) analyses confirmed both primary degradation and mineralization of atrazine. The findings of this study offer valuable insights into the potential application of photocatalytic technology for the remediation of atrazine-contaminated water bodies. By optimizing reaction conditions and selecting suitable photocatalysts it is possible to achieve effective and sustainable removal of this persistent pollutant.
综述了势催化剂光催化降解阿特拉津的研究进展
阿特拉津是一种具有内分泌干扰特性的持久性除草剂,具有重大的环境和健康风险。它在水生生态系统中的广泛使用和持久性需要有效的修复策略。光催化降解是一种很有前途的绿色技术,它利用光能将污染物降解成危害较小的物质。本研究系统地研究了多种光催化剂对阿特拉津的光催化降解,包括TiO2、硼掺杂TiO2、znin2s4基催化剂、吲哚-3-乙酸-蒙脱土复合材料、ZnO基催化剂、ZnO/GO复合材料、Pd/ZnWO4纳米复合材料和锌掺杂镉铝铁氧体。在可见光下,掺杂硼的TiO2在180 min内降解效率达到94.7 %。系统考察了催化剂浓度、pH、阿特拉津初始浓度、光照强度等关键参数对降解过程的影响。本研究的一个新颖方面在于对不同光催化剂进行比较分析,从而确定有效去除阿特拉津的最佳条件。高效液相色谱(HPLC)和总有机碳(TOC)分析证实了阿特拉津的初级降解和矿化。本研究结果为光催化技术在阿特拉津污染水体修复中的潜在应用提供了有价值的见解。通过优化反应条件和选择合适的光催化剂,可以实现对这种持久性污染物的有效和可持续的去除。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信