{"title":"Statistical inference of partially linear time-varying coefficients spatial autoregressive panel data model","authors":"Lingling Tian , Chuanhua Wei , Mixia Wu","doi":"10.1016/j.spasta.2025.100887","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates a partially linear spatial autoregressive panel data model that incorporates fixed effects, constant and time-varying regression coefficients, and a time-varying spatial lag coefficient. A two-stage least squares estimation method based on profile local linear dummy variables (2SLS-PLLDV) is proposed to estimate both constant and time-varying coefficients without the need for first differencing. The asymptotic properties of the estimator are derived under certain conditions. Furthermore, a residual-based goodness-of-fit test is constructed for the model, and a residual-based bootstrap method is used to obtain p-values. Simulation studies show the good performance of the proposed method in various scenarios. For illustration, the carbon emission data from Chinese provinces and the public capital productivity data from the United States are analyzed.</div></div>","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":"66 ","pages":"Article 100887"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial Statistics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211675325000090","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates a partially linear spatial autoregressive panel data model that incorporates fixed effects, constant and time-varying regression coefficients, and a time-varying spatial lag coefficient. A two-stage least squares estimation method based on profile local linear dummy variables (2SLS-PLLDV) is proposed to estimate both constant and time-varying coefficients without the need for first differencing. The asymptotic properties of the estimator are derived under certain conditions. Furthermore, a residual-based goodness-of-fit test is constructed for the model, and a residual-based bootstrap method is used to obtain p-values. Simulation studies show the good performance of the proposed method in various scenarios. For illustration, the carbon emission data from Chinese provinces and the public capital productivity data from the United States are analyzed.
期刊介绍:
Spatial Statistics publishes articles on the theory and application of spatial and spatio-temporal statistics. It favours manuscripts that present theory generated by new applications, or in which new theory is applied to an important practical case. A purely theoretical study will only rarely be accepted. Pure case studies without methodological development are not acceptable for publication.
Spatial statistics concerns the quantitative analysis of spatial and spatio-temporal data, including their statistical dependencies, accuracy and uncertainties. Methodology for spatial statistics is typically found in probability theory, stochastic modelling and mathematical statistics as well as in information science. Spatial statistics is used in mapping, assessing spatial data quality, sampling design optimisation, modelling of dependence structures, and drawing of valid inference from a limited set of spatio-temporal data.