{"title":"Large brains: Big unknowns in cellular neuroscience","authors":"Michael Brecht","doi":"10.1016/j.conb.2025.102981","DOIUrl":null,"url":null,"abstract":"<div><div>Contemporary cellular neuroscience is strong on small but weak on large brains. Large brains have lower neuronal densities than smaller brains. We outline opposing functional interpretations of this result. Analysis of human brains supports the idea that dendritic complexity matters and might even correlate with intellectual ability. Cortical connectomics revealed an elaboration of disinhibitory motifs in human brains. There is disagreement as to whether glia-to-neuron ratios differ between small and large brains. The elaborate myeloarchitecture of the human brain has long been recognized and novel evidence indicates myelin might play nonconventional structural functions in larger brains. Three-dimensional body-part models in the cortex of tactile specialists point to the significance of the three-dimensional structure of cortical networks. The comparative assessment of brain performance remains one of the biggest challenges in neurobiology. Understanding cellular differences between small and large brains is a neglected, yet fundamental issue for neuroscience and translation.</div></div>","PeriodicalId":10999,"journal":{"name":"Current Opinion in Neurobiology","volume":"91 ","pages":"Article 102981"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959438825000121","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Contemporary cellular neuroscience is strong on small but weak on large brains. Large brains have lower neuronal densities than smaller brains. We outline opposing functional interpretations of this result. Analysis of human brains supports the idea that dendritic complexity matters and might even correlate with intellectual ability. Cortical connectomics revealed an elaboration of disinhibitory motifs in human brains. There is disagreement as to whether glia-to-neuron ratios differ between small and large brains. The elaborate myeloarchitecture of the human brain has long been recognized and novel evidence indicates myelin might play nonconventional structural functions in larger brains. Three-dimensional body-part models in the cortex of tactile specialists point to the significance of the three-dimensional structure of cortical networks. The comparative assessment of brain performance remains one of the biggest challenges in neurobiology. Understanding cellular differences between small and large brains is a neglected, yet fundamental issue for neuroscience and translation.
期刊介绍:
Current Opinion in Neurobiology publishes short annotated reviews by leading experts on recent developments in the field of neurobiology. These experts write short reviews describing recent discoveries in this field (in the past 2-5 years), as well as highlighting select individual papers of particular significance.
The journal is thus an important resource allowing researchers and educators to quickly gain an overview and rich understanding of complex and current issues in the field of Neurobiology. The journal takes a unique and valuable approach in focusing each special issue around a topic of scientific and/or societal interest, and then bringing together leading international experts studying that topic, embracing diverse methodologies and perspectives.
Journal Content: The journal consists of 6 issues per year, covering 8 recurring topics every other year in the following categories:
-Neurobiology of Disease-
Neurobiology of Behavior-
Cellular Neuroscience-
Systems Neuroscience-
Developmental Neuroscience-
Neurobiology of Learning and Plasticity-
Molecular Neuroscience-
Computational Neuroscience