3D-printed PCL scaffolds combined with injectable sodium alginate/magnesium-doped mesoporous bioactive glass nanosphere hydrogel for meniscus regeneration: In vitro, In vivo, and multiomics-based therapeutic analyses
Hao Li , Yongkang Yang , Tianze Gao , Runmeng Li , Chao Wang , Xue Wang , Tianyuan Zhao , Qinyu Tian , Zhixing Zhang , Ruiyang Zhang , Quanyi Guo , Zhiguo Yuan , Peifu Tang
{"title":"3D-printed PCL scaffolds combined with injectable sodium alginate/magnesium-doped mesoporous bioactive glass nanosphere hydrogel for meniscus regeneration: In vitro, In vivo, and multiomics-based therapeutic analyses","authors":"Hao Li , Yongkang Yang , Tianze Gao , Runmeng Li , Chao Wang , Xue Wang , Tianyuan Zhao , Qinyu Tian , Zhixing Zhang , Ruiyang Zhang , Quanyi Guo , Zhiguo Yuan , Peifu Tang","doi":"10.1016/j.bioactmat.2025.02.016","DOIUrl":null,"url":null,"abstract":"<div><div>Meniscal injury presents a formidable challenge and often leads to functional impairment and osteoarthritic progression. Meniscus tissue engineering (MTE) is a promising solution, as conventional strategies for modulating local immune responses and generating a conducive microenvironment for effective tissue repair are lacking. Recently, magnesium-containing bioactive glass nanospheres (Mg-BGNs) have shown promise in tissue regeneration. However, few studies have explored the ability of Mg-BGNs to promote meniscal regeneration. First, we verified the anti-inflammatory and fibrochondrogenic abilities of Mg-BGNs in vitro. A comprehensive in vivo evaluation of a rabbit critical-size meniscectomy model revealed that Mg-BGNs have multiple effects on meniscal reconstruction and effectively promote fibrochondrogenesis, collagen deposition, and cartilage protection. Multiomics analysis was subsequently performed to further explore the mechanism by which Mg-BGNs regulate the regenerative microenvironment. Mechanistically, Mg-BGNs first activate the TRPM7 ion channel through the PI3K/AKT signaling pathway to promote the cellular function of synovium-derived mesenchymal stem cells and then activate the PPARγ/NF-κB axis to modulate macrophage polarization and inflammatory reactions. We demonstrated that Mg<sup>2+</sup> is critical for the crosstalk among biomaterials, immune cells, and effector cells in Mg-BGN-mediated tissue regeneration. This study provides a theoretical basis for the application of Mg-BGNs as nanomedicines to achieve in situ tissue regeneration in complex intrajoint pathological microenvironments.</div></div>","PeriodicalId":8762,"journal":{"name":"Bioactive Materials","volume":"48 ","pages":"Pages 313-335"},"PeriodicalIF":18.0000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioactive Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452199X25000647","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Meniscal injury presents a formidable challenge and often leads to functional impairment and osteoarthritic progression. Meniscus tissue engineering (MTE) is a promising solution, as conventional strategies for modulating local immune responses and generating a conducive microenvironment for effective tissue repair are lacking. Recently, magnesium-containing bioactive glass nanospheres (Mg-BGNs) have shown promise in tissue regeneration. However, few studies have explored the ability of Mg-BGNs to promote meniscal regeneration. First, we verified the anti-inflammatory and fibrochondrogenic abilities of Mg-BGNs in vitro. A comprehensive in vivo evaluation of a rabbit critical-size meniscectomy model revealed that Mg-BGNs have multiple effects on meniscal reconstruction and effectively promote fibrochondrogenesis, collagen deposition, and cartilage protection. Multiomics analysis was subsequently performed to further explore the mechanism by which Mg-BGNs regulate the regenerative microenvironment. Mechanistically, Mg-BGNs first activate the TRPM7 ion channel through the PI3K/AKT signaling pathway to promote the cellular function of synovium-derived mesenchymal stem cells and then activate the PPARγ/NF-κB axis to modulate macrophage polarization and inflammatory reactions. We demonstrated that Mg2+ is critical for the crosstalk among biomaterials, immune cells, and effector cells in Mg-BGN-mediated tissue regeneration. This study provides a theoretical basis for the application of Mg-BGNs as nanomedicines to achieve in situ tissue regeneration in complex intrajoint pathological microenvironments.
Bioactive MaterialsBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
28.00
自引率
6.30%
发文量
436
审稿时长
20 days
期刊介绍:
Bioactive Materials is a peer-reviewed research publication that focuses on advancements in bioactive materials. The journal accepts research papers, reviews, and rapid communications in the field of next-generation biomaterials that interact with cells, tissues, and organs in various living organisms.
The primary goal of Bioactive Materials is to promote the science and engineering of biomaterials that exhibit adaptiveness to the biological environment. These materials are specifically designed to stimulate or direct appropriate cell and tissue responses or regulate interactions with microorganisms.
The journal covers a wide range of bioactive materials, including those that are engineered or designed in terms of their physical form (e.g. particulate, fiber), topology (e.g. porosity, surface roughness), or dimensions (ranging from macro to nano-scales). Contributions are sought from the following categories of bioactive materials:
Bioactive metals and alloys
Bioactive inorganics: ceramics, glasses, and carbon-based materials
Bioactive polymers and gels
Bioactive materials derived from natural sources
Bioactive composites
These materials find applications in human and veterinary medicine, such as implants, tissue engineering scaffolds, cell/drug/gene carriers, as well as imaging and sensing devices.