A deep learning framework for multiplet splitting classification in 1H NMR

IF 2 3区 化学 Q3 BIOCHEMICAL RESEARCH METHODS
Giulia Fischetti , Nicolas Schmid , Simon Bruderer , Björn Heitmann , Andreas Henrici , Alessandro Scarso , Guido Caldarelli , Dirk Wilhelm
{"title":"A deep learning framework for multiplet splitting classification in 1H NMR","authors":"Giulia Fischetti ,&nbsp;Nicolas Schmid ,&nbsp;Simon Bruderer ,&nbsp;Björn Heitmann ,&nbsp;Andreas Henrici ,&nbsp;Alessandro Scarso ,&nbsp;Guido Caldarelli ,&nbsp;Dirk Wilhelm","doi":"10.1016/j.jmr.2025.107851","DOIUrl":null,"url":null,"abstract":"<div><div>One-dimensional <sup>1</sup>H Nuclear Magnetic Resonance (NMR) stands out as the quickest and simplest among various NMR experimental setups. Unfortunately, it suffers from lengthy annotation times and does not always have a clear and unique interpretation. From NMR discovery, efforts have been dedicated to introducing an automated approach to streamline the characterization of chemical compounds while ensuring consistency of the results across the scientific community. Nonetheless, this remains an ongoing challenge that has garnered renewed interest with the emergence of deep learning techniques. Here, we present MuSe Net, a novel supervised probabilistic deep learning framework that can emulate the tasks performed by an expert spectroscopist in annotating one-dimensional NMR spectra generated by small molecules. Considering only the spectrum, MuSe Net detects and classifies multiplets with up to four coupling constants for their splitting phenotype, providing a segmentation of the spectral range. We exploit uncertainty quantification to produce a confidence score to both assess classification reliability and to detect signals that do not fit into any other phenotype class. The results of the evaluation against 48 experimental <sup>1</sup>H NMR spectra of small molecules annotated by experts demonstrate that MuSe Net can deal with anomalies and unclear signals while correctly classifying multiplets and detecting overlapping peaks.</div></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"373 ","pages":"Article 107851"},"PeriodicalIF":2.0000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1090780725000230","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

One-dimensional 1H Nuclear Magnetic Resonance (NMR) stands out as the quickest and simplest among various NMR experimental setups. Unfortunately, it suffers from lengthy annotation times and does not always have a clear and unique interpretation. From NMR discovery, efforts have been dedicated to introducing an automated approach to streamline the characterization of chemical compounds while ensuring consistency of the results across the scientific community. Nonetheless, this remains an ongoing challenge that has garnered renewed interest with the emergence of deep learning techniques. Here, we present MuSe Net, a novel supervised probabilistic deep learning framework that can emulate the tasks performed by an expert spectroscopist in annotating one-dimensional NMR spectra generated by small molecules. Considering only the spectrum, MuSe Net detects and classifies multiplets with up to four coupling constants for their splitting phenotype, providing a segmentation of the spectral range. We exploit uncertainty quantification to produce a confidence score to both assess classification reliability and to detect signals that do not fit into any other phenotype class. The results of the evaluation against 48 experimental 1H NMR spectra of small molecules annotated by experts demonstrate that MuSe Net can deal with anomalies and unclear signals while correctly classifying multiplets and detecting overlapping peaks.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
13.60%
发文量
150
审稿时长
69 days
期刊介绍: The Journal of Magnetic Resonance presents original technical and scientific papers in all aspects of magnetic resonance, including nuclear magnetic resonance spectroscopy (NMR) of solids and liquids, electron spin/paramagnetic resonance (EPR), in vivo magnetic resonance imaging (MRI) and spectroscopy (MRS), nuclear quadrupole resonance (NQR) and magnetic resonance phenomena at nearly zero fields or in combination with optics. The Journal''s main aims include deepening the physical principles underlying all these spectroscopies, publishing significant theoretical and experimental results leading to spectral and spatial progress in these areas, and opening new MR-based applications in chemistry, biology and medicine. The Journal also seeks descriptions of novel apparatuses, new experimental protocols, and new procedures of data analysis and interpretation - including computational and quantum-mechanical methods - capable of advancing MR spectroscopy and imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信