Advancements in the physical simulation of near-surface extreme wind phenomena using hybrid active-passive flow control in a large boundary layer wind tunnel

IF 4.2 2区 工程技术 Q1 ENGINEERING, CIVIL
Y. Pinyochotiwong, R.A. Catarelli, T.A. Chen, B.M. Phillips, F.J. Masters, J.A. Bridge, K.R. Gurley
{"title":"Advancements in the physical simulation of near-surface extreme wind phenomena using hybrid active-passive flow control in a large boundary layer wind tunnel","authors":"Y. Pinyochotiwong,&nbsp;R.A. Catarelli,&nbsp;T.A. Chen,&nbsp;B.M. Phillips,&nbsp;F.J. Masters,&nbsp;J.A. Bridge,&nbsp;K.R. Gurley","doi":"10.1016/j.jweia.2024.105997","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents advancements in the reduced-scale physical simulation of near-surface synoptic and non-synoptic extreme wind phenomena in a long-fetch boundary layer wind tunnel (BLWT). This research was carried out at the University of Florida's BLWT, which is one of the National Science Foundation's (NSF) Natural Hazards Engineering Research Infrastructure (NHERI) Experimental Facilities (EF). Flow fields in the UF BLWT are created by three computer-controlled flow-conditioning stages: vaneaxial fans (VAF), automated roughness elements collectively called the Terraformer (TF), and a multi-fan array called the Flow Field Modulator (FFM). The VAF and TF together can generate traditional BLWT log law atmospheric surface layer (ASL) wind velocity profiles. The FFM provides additional mean flow shaping, active turbulence modulation, and the ability to create nonstationary flow fields toward simulating non-synoptic events. A novel governing convergence algorithm (GCA) was developed to provide seamless closed-loop control of the three flow-conditioning stages toward achieving target profiles in the downwind test section. Three case studies covering a broad range of target flow conditions are demonstrated. The first case is a stationary non-monotonic mean target profile, illustrating the mean flow shaping capabilities of the GCA. The second case is a nonstationary non-monotonic transitioning flow, illustrating how the FFM can be used to transition between two GCA-converged targets. The third case is a stationary ASL flow profile where the GCA is used to converge longitudinal mean, turbulence intensity, and integral length scale profiles simultaneously. The results demonstrate that a multi-stage flow control approach with closed-loop convergence can achieve user-specified complex and transient flow conditions. The resultant flow capabilities expand the traditional limits of flow simulation, bringing the breadth of behaviors in real wind events and our controlled study of them closer together.</div></div>","PeriodicalId":54752,"journal":{"name":"Journal of Wind Engineering and Industrial Aerodynamics","volume":"259 ","pages":"Article 105997"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Wind Engineering and Industrial Aerodynamics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016761052400360X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents advancements in the reduced-scale physical simulation of near-surface synoptic and non-synoptic extreme wind phenomena in a long-fetch boundary layer wind tunnel (BLWT). This research was carried out at the University of Florida's BLWT, which is one of the National Science Foundation's (NSF) Natural Hazards Engineering Research Infrastructure (NHERI) Experimental Facilities (EF). Flow fields in the UF BLWT are created by three computer-controlled flow-conditioning stages: vaneaxial fans (VAF), automated roughness elements collectively called the Terraformer (TF), and a multi-fan array called the Flow Field Modulator (FFM). The VAF and TF together can generate traditional BLWT log law atmospheric surface layer (ASL) wind velocity profiles. The FFM provides additional mean flow shaping, active turbulence modulation, and the ability to create nonstationary flow fields toward simulating non-synoptic events. A novel governing convergence algorithm (GCA) was developed to provide seamless closed-loop control of the three flow-conditioning stages toward achieving target profiles in the downwind test section. Three case studies covering a broad range of target flow conditions are demonstrated. The first case is a stationary non-monotonic mean target profile, illustrating the mean flow shaping capabilities of the GCA. The second case is a nonstationary non-monotonic transitioning flow, illustrating how the FFM can be used to transition between two GCA-converged targets. The third case is a stationary ASL flow profile where the GCA is used to converge longitudinal mean, turbulence intensity, and integral length scale profiles simultaneously. The results demonstrate that a multi-stage flow control approach with closed-loop convergence can achieve user-specified complex and transient flow conditions. The resultant flow capabilities expand the traditional limits of flow simulation, bringing the breadth of behaviors in real wind events and our controlled study of them closer together.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.90
自引率
22.90%
发文量
306
审稿时长
4.4 months
期刊介绍: The objective of the journal is to provide a means for the publication and interchange of information, on an international basis, on all those aspects of wind engineering that are included in the activities of the International Association for Wind Engineering http://www.iawe.org/. These are: social and economic impact of wind effects; wind characteristics and structure, local wind environments, wind loads and structural response, diffusion, pollutant dispersion and matter transport, wind effects on building heat loss and ventilation, wind effects on transport systems, aerodynamic aspects of wind energy generation, and codification of wind effects. Papers on these subjects describing full-scale measurements, wind-tunnel simulation studies, computational or theoretical methods are published, as well as papers dealing with the development of techniques and apparatus for wind engineering experiments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信