Main shaft instantaneous azimuth estimation for wind turbines

IF 7.9 1区 工程技术 Q1 ENGINEERING, MECHANICAL
Miroslav Zivanovic , Iñigo Vilella , Xabier Iriarte , Aitor Plaza , Gorka Gainza , Alfonso Carlosena
{"title":"Main shaft instantaneous azimuth estimation for wind turbines","authors":"Miroslav Zivanovic ,&nbsp;Iñigo Vilella ,&nbsp;Xabier Iriarte ,&nbsp;Aitor Plaza ,&nbsp;Gorka Gainza ,&nbsp;Alfonso Carlosena","doi":"10.1016/j.ymssp.2025.112478","DOIUrl":null,"url":null,"abstract":"<div><div>We present a novel approach to estimating the instantaneous main shaft angular position in the context of wind turbine structural health monitoring. We show that only two IMU channels – gyroscope axial and accelerometer tangential – contain enough information to build an acceleration state-space model that properly captures the rotational dynamics of a wind turbine. The kernel of the model is an in-phase and quadrature time-varying sinusoid whose argument is driven by the integral of the gyroscope output. This approach clearly stands in contrast to most state-of-the-art methods, where the gyroscope output is explicitly modeled. The model equation describes the states dynamics, which simultaneously assesses the instantaneous amplitude and initial phase of the angular displacement through a first-order autoregressive process. Such a state-space model features only two states per time instant; furthermore, it is linear-in-states and therefore straightforwardly estimated by the linear Kalman filter. It is shown that the instantaneous azimuth estimates obtained from the state-space model, linearly combined with the gyroscope output, effectively cancel out the long-term drift in the estimate. The benchmark results suggest that the proposed method outperforms a state-of-the-art method, in terms of robustness against noise and adaptability to changing operating regimes in a wind turbine.</div></div>","PeriodicalId":51124,"journal":{"name":"Mechanical Systems and Signal Processing","volume":"228 ","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanical Systems and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888327025001797","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We present a novel approach to estimating the instantaneous main shaft angular position in the context of wind turbine structural health monitoring. We show that only two IMU channels – gyroscope axial and accelerometer tangential – contain enough information to build an acceleration state-space model that properly captures the rotational dynamics of a wind turbine. The kernel of the model is an in-phase and quadrature time-varying sinusoid whose argument is driven by the integral of the gyroscope output. This approach clearly stands in contrast to most state-of-the-art methods, where the gyroscope output is explicitly modeled. The model equation describes the states dynamics, which simultaneously assesses the instantaneous amplitude and initial phase of the angular displacement through a first-order autoregressive process. Such a state-space model features only two states per time instant; furthermore, it is linear-in-states and therefore straightforwardly estimated by the linear Kalman filter. It is shown that the instantaneous azimuth estimates obtained from the state-space model, linearly combined with the gyroscope output, effectively cancel out the long-term drift in the estimate. The benchmark results suggest that the proposed method outperforms a state-of-the-art method, in terms of robustness against noise and adaptability to changing operating regimes in a wind turbine.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mechanical Systems and Signal Processing
Mechanical Systems and Signal Processing 工程技术-工程:机械
CiteScore
14.80
自引率
13.10%
发文量
1183
审稿时长
5.4 months
期刊介绍: Journal Name: Mechanical Systems and Signal Processing (MSSP) Interdisciplinary Focus: Mechanical, Aerospace, and Civil Engineering Purpose:Reporting scientific advancements of the highest quality Arising from new techniques in sensing, instrumentation, signal processing, modelling, and control of dynamic systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信