Niccolò Bancone, Stefano Pantaleone, Piero Ugliengo, Albert Rimola* and Marta Corno*,
{"title":"Exploring Forsterite Surface Catalysis in HCN Polymerization: Computational Insights for Astrobiology and Prebiotic Chemistry","authors":"Niccolò Bancone, Stefano Pantaleone, Piero Ugliengo, Albert Rimola* and Marta Corno*, ","doi":"10.1021/acsearthspacechem.4c0028210.1021/acsearthspacechem.4c00282","DOIUrl":null,"url":null,"abstract":"<p >Understanding the catalytic role of cosmic mineral surfaces is crucial for elucidating the chemical evolution needed for the emergence of life on Earth and other planetary systems. In this study, the catalytic role of silicate forsterite (Mg<sub>2</sub>SiO<sub>4</sub>) surfaces in the synthesis of iminoacetonitrile (IAN, HN=CH–CN) from the condensation of two hydrogen cyanide (HCN) molecules is investigated through quantum mechanical simulations. Using density functional theory calculations, the potential energy surfaces alongside the kinetics of various surface-mediated reactions leading to the formation of IAN are characterized. The effectiveness of forsterite as a catalyst is a delicate balance of the surface reactivity: on one side, the deprotonation of HCN is mandatory to trigger the dimerization; on the other side, the species should be weakly bound to the surface, thus allowing for their diffusion to meet with each other. The work reveals interesting counterintuitive results: the (120) and (101) forsterite surfaces (the less reactive ones) exhibit favorable catalytic properties for the reaction, in detriment to the (111) one (one of the most reactive). The implications of these findings in the astrobiology and prebiotic chemistry fields and for laboratory experiments are discussed, highlighting the potential role of cosmic silicates in the synthesis of complex organic molecules.</p>","PeriodicalId":15,"journal":{"name":"ACS Earth and Space Chemistry","volume":"9 2","pages":"303–313 303–313"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsearthspacechem.4c00282","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Earth and Space Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsearthspacechem.4c00282","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the catalytic role of cosmic mineral surfaces is crucial for elucidating the chemical evolution needed for the emergence of life on Earth and other planetary systems. In this study, the catalytic role of silicate forsterite (Mg2SiO4) surfaces in the synthesis of iminoacetonitrile (IAN, HN=CH–CN) from the condensation of two hydrogen cyanide (HCN) molecules is investigated through quantum mechanical simulations. Using density functional theory calculations, the potential energy surfaces alongside the kinetics of various surface-mediated reactions leading to the formation of IAN are characterized. The effectiveness of forsterite as a catalyst is a delicate balance of the surface reactivity: on one side, the deprotonation of HCN is mandatory to trigger the dimerization; on the other side, the species should be weakly bound to the surface, thus allowing for their diffusion to meet with each other. The work reveals interesting counterintuitive results: the (120) and (101) forsterite surfaces (the less reactive ones) exhibit favorable catalytic properties for the reaction, in detriment to the (111) one (one of the most reactive). The implications of these findings in the astrobiology and prebiotic chemistry fields and for laboratory experiments are discussed, highlighting the potential role of cosmic silicates in the synthesis of complex organic molecules.
期刊介绍:
The scope of ACS Earth and Space Chemistry includes the application of analytical, experimental and theoretical chemistry to investigate research questions relevant to the Earth and Space. The journal encompasses the highly interdisciplinary nature of research in this area, while emphasizing chemistry and chemical research tools as the unifying theme. The journal publishes broadly in the domains of high- and low-temperature geochemistry, atmospheric chemistry, marine chemistry, planetary chemistry, astrochemistry, and analytical geochemistry. ACS Earth and Space Chemistry publishes Articles, Letters, Reviews, and Features to provide flexible formats to readily communicate all aspects of research in these fields.