Infrared Cooling in an Anharmonic Cascade Framework: 2-Cyanoindene, the Smallest Cyano-PAH Identified in Taurus Molecular Cloud-1

IF 2.9 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Mark H. Stockett, Vincent J. Esposito, Eleanor K. Ashworth, Ugo Jacovella and James N. Bull*, 
{"title":"Infrared Cooling in an Anharmonic Cascade Framework: 2-Cyanoindene, the Smallest Cyano-PAH Identified in Taurus Molecular Cloud-1","authors":"Mark H. Stockett,&nbsp;Vincent J. Esposito,&nbsp;Eleanor K. Ashworth,&nbsp;Ugo Jacovella and James N. Bull*,&nbsp;","doi":"10.1021/acsearthspacechem.4c0038110.1021/acsearthspacechem.4c00381","DOIUrl":null,"url":null,"abstract":"<p >Infrared (IR) cooling of polycyclic aromatic hydrocarbon (PAH) molecules is a major radiative stabilization mechanism of PAHs present in space and is the origin of the aromatic infrared bands (AIBs). Here, we report an anharmonic cascade model in a master equation framework to model IR emission rates and emission spectra of energized PAHs as a function of internal energy. The underlying (simple harmonic cascade) framework for fundamental vibrations has been developed through the modeling of cooling rates of PAH cations and other carboneaous ions measured in electrostatic ion storage ring experiments performed under “molecular cloud in a box” conditions. The anharmonic extension is necessitated because cyano-PAHs, recently identified in Taurus Molecular Cloud-1 (TMC-1), exhibit strong anharmonic couplings, which make substantial contributions to the IR emission dynamics. We report an experimental mid-IR (650–3200 cm<sup>–1</sup>) absorption spectrum of 2-cyanoindene (2CNI), which is the smallest cyano-PAH that has been identified in TMC-1 and model its IR cooling rates and emission properties. The mid-IR absorption spectrum is reasonably described by anharmonic calculations at the B3LYP/N07D level of theory that include resonance polyad matrices, although the CN-stretch mode frequency continues to be difficult to describe. The anharmonic cascade framework can be readily applied to other neutral or charged PAHs and is also readily extended to include competing processes, such as recurrent fluorescence and isomerization.</p>","PeriodicalId":15,"journal":{"name":"ACS Earth and Space Chemistry","volume":"9 2","pages":"382–393 382–393"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsearthspacechem.4c00381","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Earth and Space Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsearthspacechem.4c00381","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Infrared (IR) cooling of polycyclic aromatic hydrocarbon (PAH) molecules is a major radiative stabilization mechanism of PAHs present in space and is the origin of the aromatic infrared bands (AIBs). Here, we report an anharmonic cascade model in a master equation framework to model IR emission rates and emission spectra of energized PAHs as a function of internal energy. The underlying (simple harmonic cascade) framework for fundamental vibrations has been developed through the modeling of cooling rates of PAH cations and other carboneaous ions measured in electrostatic ion storage ring experiments performed under “molecular cloud in a box” conditions. The anharmonic extension is necessitated because cyano-PAHs, recently identified in Taurus Molecular Cloud-1 (TMC-1), exhibit strong anharmonic couplings, which make substantial contributions to the IR emission dynamics. We report an experimental mid-IR (650–3200 cm–1) absorption spectrum of 2-cyanoindene (2CNI), which is the smallest cyano-PAH that has been identified in TMC-1 and model its IR cooling rates and emission properties. The mid-IR absorption spectrum is reasonably described by anharmonic calculations at the B3LYP/N07D level of theory that include resonance polyad matrices, although the CN-stretch mode frequency continues to be difficult to describe. The anharmonic cascade framework can be readily applied to other neutral or charged PAHs and is also readily extended to include competing processes, such as recurrent fluorescence and isomerization.

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Earth and Space Chemistry
ACS Earth and Space Chemistry Earth and Planetary Sciences-Geochemistry and Petrology
CiteScore
5.30
自引率
11.80%
发文量
249
期刊介绍: The scope of ACS Earth and Space Chemistry includes the application of analytical, experimental and theoretical chemistry to investigate research questions relevant to the Earth and Space. The journal encompasses the highly interdisciplinary nature of research in this area, while emphasizing chemistry and chemical research tools as the unifying theme. The journal publishes broadly in the domains of high- and low-temperature geochemistry, atmospheric chemistry, marine chemistry, planetary chemistry, astrochemistry, and analytical geochemistry. ACS Earth and Space Chemistry publishes Articles, Letters, Reviews, and Features to provide flexible formats to readily communicate all aspects of research in these fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信