Shiwei Sun, Kai Zhang, Sai Xu, Xinghua Shi, Jiuling Wang
{"title":"Diffusion of Nanosheets in Unentangled Polymer Melts","authors":"Shiwei Sun, Kai Zhang, Sai Xu, Xinghua Shi, Jiuling Wang","doi":"10.1021/acsmacrolett.4c00535","DOIUrl":null,"url":null,"abstract":"Understanding the dynamics of nanosheets in polymer matrices is crucial for the processing of polymer nanocomposites and their applications in drug delivery. In this work, we investigate the diffusion of thin nanosheets in unentangled polymer melts using molecular dynamics simulations. We show that for nanosheets smaller than a characteristic size <i>l</i><sub>c</sub>, which is a few times the polymer chain size, the continuum hydrodynamic theory based on macroscopic viscosity breaks down and significantly underestimates the diffusion coefficients. For nanosheets with sizes <i>l</i> < <i>l</i><sub>c</sub>, we derive scaling relationships for both translational and rotational diffusion coefficients as functions of <i>l</i> and further reveal the dynamical coupling between nanosheet motion and the modes of the polymer melt. For <i>l</i> > <i>l</i><sub>c</sub>, the continuum theory is recovered. Our findings reconcile the continuum and scaling theories for the diffusion of nanoparticles in polymer melts.","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":"64 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Macro Letters","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsmacrolett.4c00535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the dynamics of nanosheets in polymer matrices is crucial for the processing of polymer nanocomposites and their applications in drug delivery. In this work, we investigate the diffusion of thin nanosheets in unentangled polymer melts using molecular dynamics simulations. We show that for nanosheets smaller than a characteristic size lc, which is a few times the polymer chain size, the continuum hydrodynamic theory based on macroscopic viscosity breaks down and significantly underestimates the diffusion coefficients. For nanosheets with sizes l < lc, we derive scaling relationships for both translational and rotational diffusion coefficients as functions of l and further reveal the dynamical coupling between nanosheet motion and the modes of the polymer melt. For l > lc, the continuum theory is recovered. Our findings reconcile the continuum and scaling theories for the diffusion of nanoparticles in polymer melts.
期刊介绍:
ACS Macro Letters publishes research in all areas of contemporary soft matter science in which macromolecules play a key role, including nanotechnology, self-assembly, supramolecular chemistry, biomaterials, energy generation and storage, and renewable/sustainable materials. Submissions to ACS Macro Letters should justify clearly the rapid disclosure of the key elements of the study. The scope of the journal includes high-impact research of broad interest in all areas of polymer science and engineering, including cross-disciplinary research that interfaces with polymer science.
With the launch of ACS Macro Letters, all Communications that were formerly published in Macromolecules and Biomacromolecules will be published as Letters in ACS Macro Letters.