Tailoring zinc diatomic bidirectional catalysts achieving orbital coupling–hybridization for ultralong-cycling zinc–iodine batteries†

IF 32.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chenxu Dong, Yongkun Yu, Changning Ma, Cheng Zhou, Jiajing Wang, Jiapei Gu, Juan Ji, Shubin Yang, Zunfeng Liu, Xu Xu and Liqiang Mai
{"title":"Tailoring zinc diatomic bidirectional catalysts achieving orbital coupling–hybridization for ultralong-cycling zinc–iodine batteries†","authors":"Chenxu Dong, Yongkun Yu, Changning Ma, Cheng Zhou, Jiajing Wang, Jiapei Gu, Juan Ji, Shubin Yang, Zunfeng Liu, Xu Xu and Liqiang Mai","doi":"10.1039/D4EE05767H","DOIUrl":null,"url":null,"abstract":"<p >Aqueous zinc–iodine (Zn–I<small><sub>2</sub></small>) batteries have become promising energy storage devices due to their high theoretical capacity, high safety, and low cost advantages. However, sluggish kinetics and the shuttle effect of polyiodides still limit the further development of Zn–I<small><sub>2</sub></small> batteries. Single-atom catalysts have been explored in Zn–I<small><sub>2</sub></small> batteries to address the above challenges, but single atom sites restrict the adsorption/desorption relationship of reactants and intermediates. Herein, honeycomb shaped Zn dual atom sites embedded in nitrogen doped carbon nanosheets were designed to not only enhance the confinement of I<small><sub>2</sub></small>, but also facilitate the bidirectional redox kinetics of polyiodides through orbital coupling and hybridization, thereby improving the capacity and cycle stability of Zn–I<small><sub>2</sub></small> batteries. Impressively, the batteries with I<small><sub>2</sub></small>@Zn<small><sub>2</sub></small>NC cathodes received the longest cycle of 100 000 cycles at 50C, retaining an ultra-low capacity fading of 0.0002% per cycle. Additionally, the batteries achieved 7000 cycles at 10C even at −20 °C, verifying good catalytic performance of Zn<small><sub>2</sub></small>NC at low temperature. This work reveals the mechanism of synergistic adsorption and catalytic conversion of polyiodides by dual single atom catalysts, providing guidance for the design of dual atom site structures to achieve state-of-the-art Zn–I<small><sub>2</sub></small> batteries.</p>","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":" 6","pages":" 3014-3025"},"PeriodicalIF":32.4000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ee/d4ee05767h","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Aqueous zinc–iodine (Zn–I2) batteries have become promising energy storage devices due to their high theoretical capacity, high safety, and low cost advantages. However, sluggish kinetics and the shuttle effect of polyiodides still limit the further development of Zn–I2 batteries. Single-atom catalysts have been explored in Zn–I2 batteries to address the above challenges, but single atom sites restrict the adsorption/desorption relationship of reactants and intermediates. Herein, honeycomb shaped Zn dual atom sites embedded in nitrogen doped carbon nanosheets were designed to not only enhance the confinement of I2, but also facilitate the bidirectional redox kinetics of polyiodides through orbital coupling and hybridization, thereby improving the capacity and cycle stability of Zn–I2 batteries. Impressively, the batteries with I2@Zn2NC cathodes received the longest cycle of 100 000 cycles at 50C, retaining an ultra-low capacity fading of 0.0002% per cycle. Additionally, the batteries achieved 7000 cycles at 10C even at −20 °C, verifying good catalytic performance of Zn2NC at low temperature. This work reveals the mechanism of synergistic adsorption and catalytic conversion of polyiodides by dual single atom catalysts, providing guidance for the design of dual atom site structures to achieve state-of-the-art Zn–I2 batteries.

Abstract Image

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy & Environmental Science
Energy & Environmental Science 化学-工程:化工
CiteScore
50.50
自引率
2.20%
发文量
349
审稿时长
2.2 months
期刊介绍: Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences." Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信