Eunsik Choi, Suwon Choi, Kunsik An, Kyung-Tae Kang
{"title":"Image-based impedance spectroscopy for printed electronics","authors":"Eunsik Choi, Suwon Choi, Kunsik An, Kyung-Tae Kang","doi":"10.1038/s41528-025-00382-y","DOIUrl":null,"url":null,"abstract":"<p>The field of printed electronics has been extensively researched for its versatility and scalability in flexible and large-area applications. Impedance is of great importance for the performance and reliability of electronics. However, its measurement requires electrical contacts, which makes it difficult on complex or bio-interfaces. Although the printing process is accessible, impedance characterization may be cumbersome, which can create a bottleneck during the manufacturing process. This paper reports the first effort at developing a convolutional neural network (CNN) based image regression model to replace impedance spectroscopy (IS). In our study, the CNN model learned the features of inkjet-printed electrode images that are dependent on the printing and sintering of nanomaterials and quantitatively predicted the resistance and capacitance of the equivalent circuit of the inkjet-printed lines. The image-based impedance spectroscopy (IIS) is expected to be the cornerstone as a revolutionary approach to electronics research and development enabled by deep neural networks.</p>","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":"64 1","pages":""},"PeriodicalIF":12.3000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Flexible Electronics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41528-025-00382-y","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The field of printed electronics has been extensively researched for its versatility and scalability in flexible and large-area applications. Impedance is of great importance for the performance and reliability of electronics. However, its measurement requires electrical contacts, which makes it difficult on complex or bio-interfaces. Although the printing process is accessible, impedance characterization may be cumbersome, which can create a bottleneck during the manufacturing process. This paper reports the first effort at developing a convolutional neural network (CNN) based image regression model to replace impedance spectroscopy (IS). In our study, the CNN model learned the features of inkjet-printed electrode images that are dependent on the printing and sintering of nanomaterials and quantitatively predicted the resistance and capacitance of the equivalent circuit of the inkjet-printed lines. The image-based impedance spectroscopy (IIS) is expected to be the cornerstone as a revolutionary approach to electronics research and development enabled by deep neural networks.
期刊介绍:
npj Flexible Electronics is an online-only and open access journal, which publishes high-quality papers related to flexible electronic systems, including plastic electronics and emerging materials, new device design and fabrication technologies, and applications.