{"title":"Carotene hydroxylase DcCYP97A3 affects carotenoids metabolic flow and taproot color by influencing the conversion of α-carotene to lutein in carrot","authors":"Hui-Ru Wang, Rong-Rong Zhang, Ya-Hui Wang, Jian-Hua Zhou, Miao Sun, Li-Xiang Wang, Yu-Qing Zhang, Yi Liang, Xiao-Jie Li, Zhi-Sheng Xu, Jing Ma, Hui Liu, Jian-Ping Tao, Ai-Sheng Xiong","doi":"10.1093/hr/uhaf054","DOIUrl":null,"url":null,"abstract":"The color diversity of non-purple carrot taproots is mainly affected by carotenoid species and content. Carrot cytochrome P450 carotene β-ring hydroxylase (DcCYP97A3) may influence carotenoid accumulation in carrots, however, the roles of DcCYP97A3 in carrot remain unclear. Compared to the orange carrot ‘Kurodagosun, KRD’, the yellow carrot ‘Yellowstone, YST’ had greater relative transcript levels of DcCYP97A3. DcCYP97A3 was shown to catalyze the β-ring hydroxylation of α-carotene to create zeaxanthin when it was expressed in Escherichia coli accumulating α- and β-carotene. Expression of the DcCYP97A3 of ‘YST’ in DcCYP97A3 functionally deficient orange carrot ‘KRD’ resulted in yellow taproots, decreased α-carotene and β-carotene content, decreased α-/β-carotene ratio, and increased lutein content. In carrots overexpressing the DcCYP97A3 gene, the transcript levels of DcLCYE and DcLCYB1 were significantly up- and down-regulated, respectively. Gene editing of DcCYP97A3 in ‘YST’ resulted in DcCYP97A3 knockout mutants with significantly reduced levels of lutein and β-carotene and significantly up-regulated transcript levels of DcCHXB2 and DcCCD4. These findings advance our knowledge of the molecular mechanisms behind carrot carotenoid metabolism.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"24 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulture Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/hr/uhaf054","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
The color diversity of non-purple carrot taproots is mainly affected by carotenoid species and content. Carrot cytochrome P450 carotene β-ring hydroxylase (DcCYP97A3) may influence carotenoid accumulation in carrots, however, the roles of DcCYP97A3 in carrot remain unclear. Compared to the orange carrot ‘Kurodagosun, KRD’, the yellow carrot ‘Yellowstone, YST’ had greater relative transcript levels of DcCYP97A3. DcCYP97A3 was shown to catalyze the β-ring hydroxylation of α-carotene to create zeaxanthin when it was expressed in Escherichia coli accumulating α- and β-carotene. Expression of the DcCYP97A3 of ‘YST’ in DcCYP97A3 functionally deficient orange carrot ‘KRD’ resulted in yellow taproots, decreased α-carotene and β-carotene content, decreased α-/β-carotene ratio, and increased lutein content. In carrots overexpressing the DcCYP97A3 gene, the transcript levels of DcLCYE and DcLCYB1 were significantly up- and down-regulated, respectively. Gene editing of DcCYP97A3 in ‘YST’ resulted in DcCYP97A3 knockout mutants with significantly reduced levels of lutein and β-carotene and significantly up-regulated transcript levels of DcCHXB2 and DcCCD4. These findings advance our knowledge of the molecular mechanisms behind carrot carotenoid metabolism.
期刊介绍:
Horticulture Research, an open access journal affiliated with Nanjing Agricultural University, has achieved the prestigious ranking of number one in the Horticulture category of the Journal Citation Reports ™ from Clarivate, 2022. As a leading publication in the field, the journal is dedicated to disseminating original research articles, comprehensive reviews, insightful perspectives, thought-provoking comments, and valuable correspondence articles and letters to the editor. Its scope encompasses all vital aspects of horticultural plants and disciplines, such as biotechnology, breeding, cellular and molecular biology, evolution, genetics, inter-species interactions, physiology, and the origination and domestication of crops.