{"title":"Scalable production of muscle and adipose cell-laden microtissues using edible macroporous microcarriers for 3D printing of cultured fish fillets","authors":"Xuan Zhou, Hongwei Zheng, Yanchi Wu, Haowen Yin, Xiangzhao Mao, Ningyang Li, Huarong Guo, Yaoguang Chang, Xiaoming Jiang, Qinghui Ai, Changhu Xue","doi":"10.1038/s41467-025-57015-1","DOIUrl":null,"url":null,"abstract":"<p>Cellular agriculture is a novel platform for addressing the issues of protein scarcity, environmental pressures, and food safety. However, expanding seed cells at a large scale remains a prerequisite for achieving industrial cultured meat production. We here propose the production of large-pore-sized edible porous microcarriers (EPMs) by using NaCl to precisely control ice crystal growth during cryogenic crosslinking. Muscle satellite cells (SCs) and adipose-derived stem cells (ASCs) from large yellow croakers exhibit remarkable adhesion, proliferation, and differentiation on gelatin-based EPMs. Following consecutive expansion, SCs and ASCs densities reach 6.25 × 10<sup>5</sup> and 5.77 × 10<sup>5</sup> cells/mL, leading to a 499-fold and 461-fold increase in cell numbers, respectively. Subsequently, the mature microtissues are incorporated into a bioink, thereby enabling successful three-dimensional printing of cultured fish fillets with sensory properties similar to native fish fillets. EPM-based cell expansion and food structuring techniques are promising in facilitating large-scale cultured fish meat production.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"14 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-57015-1","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Cellular agriculture is a novel platform for addressing the issues of protein scarcity, environmental pressures, and food safety. However, expanding seed cells at a large scale remains a prerequisite for achieving industrial cultured meat production. We here propose the production of large-pore-sized edible porous microcarriers (EPMs) by using NaCl to precisely control ice crystal growth during cryogenic crosslinking. Muscle satellite cells (SCs) and adipose-derived stem cells (ASCs) from large yellow croakers exhibit remarkable adhesion, proliferation, and differentiation on gelatin-based EPMs. Following consecutive expansion, SCs and ASCs densities reach 6.25 × 105 and 5.77 × 105 cells/mL, leading to a 499-fold and 461-fold increase in cell numbers, respectively. Subsequently, the mature microtissues are incorporated into a bioink, thereby enabling successful three-dimensional printing of cultured fish fillets with sensory properties similar to native fish fillets. EPM-based cell expansion and food structuring techniques are promising in facilitating large-scale cultured fish meat production.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.