SHORT INTERNODE1 regulates the activity of MADS transcription factors during rice floral organ development

IF 6.5 1区 生物学 Q1 PLANT SCIENCES
Erchao Duan, Xuan Teng, Huan Xu, Wenyu Ma, Desheng Zhang, Rushuang Zhang, Chuanwei Gu, Yipeng Zhang, Rongbo Chen, Xiaoli Chen, Miao Feng, Qibing Lin, Hui Dong, Yuanyan Zhang, Xue Yang, Lei Zhou, Shijia Liu, Xi Liu, Yunlu Tian, Ling Jiang, Haiyang Wang, Yihua Wang, Jianmin Wan
{"title":"SHORT INTERNODE1 regulates the activity of MADS transcription factors during rice floral organ development","authors":"Erchao Duan, Xuan Teng, Huan Xu, Wenyu Ma, Desheng Zhang, Rushuang Zhang, Chuanwei Gu, Yipeng Zhang, Rongbo Chen, Xiaoli Chen, Miao Feng, Qibing Lin, Hui Dong, Yuanyan Zhang, Xue Yang, Lei Zhou, Shijia Liu, Xi Liu, Yunlu Tian, Ling Jiang, Haiyang Wang, Yihua Wang, Jianmin Wan","doi":"10.1093/plphys/kiaf034","DOIUrl":null,"url":null,"abstract":"Floral organ identity is fundamental to species diversity and reproductive success in plants and is mainly determined by the combinatorial action of MADS homeotic factors. However, despite their conserved roles in specifying floral organ identity, the regulation of MADS transcription factors remains elusive. Here, we show that the rice (Oryza sativa L.) short internode1 (shi1) mutant displays pleiotropic defects in floral organ development, resulting in severe penalties to yield and grain quality. OsSHI1 mRNA accumulates in each floral organ whorl, and OsSHI1 interacts with multiple MADS transcription factors, especially the class E members. This physical interaction occurs through the intrinsic MADS domains, thus regulating the transcriptional activity of the MADS transcription factors. This study provides insight into the molecular and genetic regulatory mechanisms underlying the roles of OsSHI1 and MADS transcription factors in rice floral organ development and, consequently, grain yield and quality.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"5 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiaf034","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Floral organ identity is fundamental to species diversity and reproductive success in plants and is mainly determined by the combinatorial action of MADS homeotic factors. However, despite their conserved roles in specifying floral organ identity, the regulation of MADS transcription factors remains elusive. Here, we show that the rice (Oryza sativa L.) short internode1 (shi1) mutant displays pleiotropic defects in floral organ development, resulting in severe penalties to yield and grain quality. OsSHI1 mRNA accumulates in each floral organ whorl, and OsSHI1 interacts with multiple MADS transcription factors, especially the class E members. This physical interaction occurs through the intrinsic MADS domains, thus regulating the transcriptional activity of the MADS transcription factors. This study provides insight into the molecular and genetic regulatory mechanisms underlying the roles of OsSHI1 and MADS transcription factors in rice floral organ development and, consequently, grain yield and quality.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Physiology
Plant Physiology 生物-植物科学
CiteScore
12.20
自引率
5.40%
发文量
535
审稿时长
2.3 months
期刊介绍: Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research. As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信