Primordial Black Holes in the Solar System

Valentin Thoss and Andreas Burkert
{"title":"Primordial Black Holes in the Solar System","authors":"Valentin Thoss and Andreas Burkert","doi":"10.3847/1538-4357/adae84","DOIUrl":null,"url":null,"abstract":"If primordial black holes (PBHs) of asteroidal mass make up the entire dark matter, they could be detectable through their gravitational influence in the solar system. In this work, we study the perturbations that PBHs induce on the orbits of planets. Detailed numerical simulations of the solar system, embedded in a halo of PBHs, are performed. We find that the gravitational effect of the PBHs is dominated by the closest encounter. Using the Earth–Mars distance as an observational probe, we show that the perturbations are smaller than the current measurement uncertainties and thus PBHs are not directly constrained by solar system ephemerides. We estimate that an improvement in the ranging accuracy by an order of magnitude or the extraction of signals well below the noise level is required to detect the gravitational influence of PBHs in the solar system in the foreseeable future.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/adae84","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

If primordial black holes (PBHs) of asteroidal mass make up the entire dark matter, they could be detectable through their gravitational influence in the solar system. In this work, we study the perturbations that PBHs induce on the orbits of planets. Detailed numerical simulations of the solar system, embedded in a halo of PBHs, are performed. We find that the gravitational effect of the PBHs is dominated by the closest encounter. Using the Earth–Mars distance as an observational probe, we show that the perturbations are smaller than the current measurement uncertainties and thus PBHs are not directly constrained by solar system ephemerides. We estimate that an improvement in the ranging accuracy by an order of magnitude or the extraction of signals well below the noise level is required to detect the gravitational influence of PBHs in the solar system in the foreseeable future.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信